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Abstract
This paper gives us a demonstration of twin primes conjecture using approx-
imation of function Υ that we introduce in section 6. Sections 1 − 5 give us
introduction to terminology and a clarification on Υ terms. In particular sec-
tion 5 is really important because of its Lemma. Section 7 reassume foregoing
explanations and it give us two theorems and one corollary; the theorem 7.2
give us exact approximation of twin primes counting function.

1 Introduction

A number is a twin if it can be found at distance two from the previous or
following number of a sequence.
A famous algorithm for making table of primes is the sieve of Eratosthenes:
sequentially write down the integers from 2 to a number n that is the last of
table; cross out all number greater then 2 which are divisible by 2; the remaining
numbers are all twins but only some of them will survive to the next deletions.
Then we can find the smallest remaining number greater then 2: it is 3. So
we cross out all numbers greater then 3 which are divisible by 3,the remaining
ones are twins in the form 6k + 1 and 6k − 1. As previous only some of them
will survive to the next deletions. We can go as far as b

√
nc so the numbers

remaining are prime.
A famous conjecture affirms that there are an infinite number of twin primes.
We can demonstrate this conjecture by the natural distribution of primes using
the formula n

lnn , discovered by Gauss. This formula approximates the cumula-
tive distribution of the primes. Moreover, paradoxically, the existence of twin
primes depends on the following observation: if the mean distance in distribu-
tion of primes increases, the amount of twin primes increases too.

2 Inaccurate sieves

First we observe that, if a number x is prime, it will suffice to control if it
is divisible by integers under

√
x. So, if we want to realize an exact sieve of
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Eratosthenes to the number x we must cross out multiples of primes numerically
inferior to

√
x.

We name would-be twin primes those numbers in the form 6k+1, 6k−1 included
between x and its root. They are

bx ∗ 2
6
c − b

√
x ∗ 2
6
c. (1)

using (1) we can miscalculate two numbers in excess at most but this is a
negligible error, so we don’t consider it. To find couple, it will suffice to divide
by two.
Primes greater then 3, under

√
x, will be named eliminators because they will

surely cut out some of the would-be twin primes thanks to the sieve; in fact
these numbers, being 6k+ 1 or 6k− 1, have got a period of 6. This means that
they have to ”jump” six times to complete the period; so

6k + 1 ≡ 1 mod 6 (2)
6k − 1 ≡ −1 mod 6 (3)

The following figure clarifies the terminology

Fig. 0 An eliminator y and its ”jumps”(or multiples).

In the figure, y is an eliminator and the ”jumps” are its multiples. Specifically
the eliminator 6k + 1, after 4 jumps, cuts out a 6k − 1 number and, after 6
jumps, it cuts out a 6k + 1 number; specularly behaves 6k − 1.
The very natural conclusion is that every y eliminator will take x/y jumps:
x/6y will delete numbers of its own form and x/6y will cut out numbers of the
opposite one. An y eliminator will delete totally:

b x
6y
c+ b x

6y
c ∼ b x

3y
c (4)

would-be twin primes. Among these we can reject the jumps within the elim-
inator’s zone, so we consider only the would-be twin primes over

√
x. Finally

the formula (4) becomes

K = b x
3y
c − b

√
x

3y
c, (5)

which doesn’t consider possible repetitions, i.e. two or more eliminators could
delete the same would-be twin prime,but, by this way, we consider two or more
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times the same deleted number; moreover we conjecture that whenever an elim-
inator makes a jump it deletes a pair of twins, but actually it could delete a
number already deprived of its twin (i.e. it is insignificant in the amount of
couples).
The final formula is

bx
6
c − b

√
x

6
c −

∑
y∈π(

√
x)

K (6)

with K is (5) and π(
√
x) are primes under

√
x. Thinking that (6) verifies con-

jecture (i.e. it is positive) is an utopia, unless we presume that the distribution
of eliminators is near

√
x. We have only to refine the estimate, by removing

repetitions and introducing new remarks. The (6) becomes

K ∼ b1
3
x

y
(1− 1√

x
)c (7)

it is not be forgotten that we added the floor functions like simple fractions.

3 The w(n) function

Now we can introduce w(n) function that represent the number of distinct
primes factor of a number n. Hence we can avoid repetitions, in fact all numbers
hit by an eliminator are deleted necessarily by another eliminator too (because
of factorization); so we can easily halve number of jumps. The question is
that a would-be twin primes could be deleted by more than two numbers, for
example if all numbers would be hit by three eliminators we should divide total
amount of jumps by three. All we need now is a function that shows how many
different primes is made a number. Now we consider mean increase of w(n) (it
is be considered that the growth of w(n) is very irregular). This is the number
eliminators jumps should be divided by.
So,using Hardy and Wright’s estimate (1979) we can right∑n

i=1 w(i)
n

= ln ln(n) +B1 +O(
1

ln(n)
) (8)

with B1 = 0.261497128. Lower bound for the mean function is

ln ln(n) +B1 −
1

ln(n)
≤
∑n
i=1 w(i)
n

(9)

which allows the following calculation∑n
i=
√
n w(i)

n−
√
n

. (10)

Nevertheless, (10) or ∑n
i=
√
n w(i)− n

lnn +
√
n

ln
√
n

n−
√
n− n

lnn +
√
n

ln
√
n

(11)
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(the correct version of (10)) formulas are not enough to give an answer to our
question: in fact we are not considering every number factorization, but we
have to consider only factorization of 6k + 1 and 6k − 1(i.e. numbers hit by
eliminators). Using (9) we have

w(z) = z ln ln(z) +B1z+O(
z

ln z
)− (z− 1) ln ln(z− 1)−B1(z− 1)−O(

z − 1
ln z − 1

)

(12)
with z = 6k − 1 or z = 6k + 1. The

L =
1

#z

∑
z∈[1,n]

w(z) (13)

give us the w(n) mean we were finding, of course different from (11). It has
to be considered that we are making linear transformations: so (13) has to be
a linear transformation of (8), by this way, we can go on till the least square
regression of a some type of solution.

4 Distribution of primes

Using prime numbers theorem:

lim
x→∞

π(x)
x/ ln(x)

= 1

we obtain this assert: if we have x numbers (considering that x
ln(x) are primes) we

can choose as mean distance among close primes precisely ln(x). That means
limx→∞ lnx = ∞ . This simple consideration is also supported by Rosser e
Schoenfeld’s estimate (1962). They assert that if x ≥ 17 then

x

lnx
< π(x) < 1.25506

x

lnx
(14)
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Fig. 1 Estimate function of π(x) with functions of (14).

The conclusion is that the exact mean distance can be calculated with ε(x) x
ln(x)

with

ε(x) ∈ [1, 1.25506] (15)
lim
x→∞

ε(x) = 1 (16)

So, considering 1.25506 x
ln(x) , primes distance will be lower then ε(x) x

ln(x) , elim-
inators are lower then the exact ones, therefore they will take more ”jumps”.
This is obviously the worst possible hypothesis; instead if we consider ε(x) = 1
we are acting for the best.

1.25506
µ

lnµ
= 1.25506

x

lnx
+ 1 (17)

setting µ > 0.(17) answers this question: considering x prime (and remembering
that primes counting function increases, according to estimate obtained from
choosing ε(x) = 1.25506) which one will be next prime number µ where primes
counting function will be bigger of an unit ? Now, taking in account that primes
counting function is bigger of an unit, this means that there is a new prime.
Therefore, x− µ is the distance between two next primes.
x−µ represents mean increase, in fact Gauss’estimate does not into account the
actual distribution of primes otherwise we had noticed that at a certain point
twin primes would be disappeared because x−µ is monotonous rising function.
The same could be done considering equation with ε(x) = 1, obtaining the
following limits:

Fig. 2 With:
Blue → functions µ− x with ε(x) = 1.25506, ε(x) = 1 and
Red → ln(x).
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Solving (17) we have a function which follows the state of ln(x) in fact we can
demonstrate that this function is a logarithm shifted by a constant and rotated
on a point. According to our pursuit is always simpler making a least square
regression with x ≥ 13 on 1e5 samples where we can find µ−x = 0.7851 ln(x) +
1.0047. Solving the same function considering ε(x) = 1 we can approximate
trough ln(x) + 1.1985 and we can guarantee, following the expectations, that
ln(x) remains between the blue functions in fig.2 with x > 150.

Fig. 3 The function is made by a lot of couples (i, p) where i is
the i-th ordinal number end p is the related prime; for example
(1, 2),(2, 3),(3, 5),(4, 7) . . ..

Calculating the distance where x ≥ 3 is prime, the function µ = x+0.7851 ln(x)+
1.0047 gives a good approximation of fig.3 function. The following graph rep-
resents the difference between µ = x + 0.7851 ln(x) + 1.0047 and the function
shown in fig.3 .

6



Fig. 4 Difference between µ = x + 0.7851 ln(x) + 1.0047 and the
function shown in fig.3 choosing x as prime.

From these results we can get the approximate formula that generates y elimi-
nators of (5)which are used in (6). The recursive formula becomes{

x0 = 2
xn+1 = xn + 0.7851 ln(xn) + 1.0047. (18)

The elements generated by algorithm approximate exact eliminators from the
below.

Fig. 4 Function of figure 3 (blue) and function defined by algorithm
(18) (cyan).
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Actually algorithm approximates better function of fig. 3 if we choose xn+1 =
xn+ln(xn); as a consequence the distance between two primes is ln(x), recalling
what we deduced at the beginning using prime numbers theorem. Assuming that
the distance between two primes is a logarithm without a coefficient lower then
one is basic to go further with our analysis .

5 Completely deleted twins

When the distance between two primes, that according the foregoing estimate
is

µ− x = ln(x), (19)

increases as far as it becomes bigger then 8, we know that among two primes is
a completely deleted couple of would-be twin primes (remembering that period
is 6) i.e. a couple of twin doesn’t survive eliminator’s jumps. This is a good
thing because, thanks to this sacrifice, the others couples of primes will survive
proving our claim. As a matter of fact if a couple is completely erased, this
means that we needed to use two jumps to eliminate it. So we take into account
the jumps that will hit numbers already deprived of their twin, from the whole
number of jumps. These jumps, in fact, are irrelevant to count the would-be
couples of twin that will be deleted (indeed, we can consider a couple of twin
already destroyed, from the moment it misses one of the two members)
Mathematically we can right

T =
∑

p∈[
√
x,x]

bdist(p)− 3
6

c (20)

where dist(p) gives distance function between p (prime) and the following prime
number. Now

T̃ =
n∑

p=
√
n

(b ln(p)− 3
6

c)+ (21)

is the number of jumps needed to completely erase the twin couples between√
n and n. Every x in (21) is, in fact, a prime hence if we develop the formula

above we obtain
n∑

p=
√
n

b ln(p)
6
c−b3

6
∗( n

ln(n)
−
√
n

ln
√
n

)c ∼ 1
6

(
n∑

p=
√
n

ln(p)−5.5(
n

ln(n)
−
√
n

ln
√
n

)) (22)

clearly we added here floor functions so we have to take away at least a num-
ber of elements equal to decimals you may obtain from formula above. For
this considering numerator divided by 6 the following decimals can be obtained:
1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 ; adding these numbers we obtain 2.5, thus we have to add to the nu-

merator −2.5∗( n
ln(n)−

√
n

ln
√
n

): this clarifies 5.5. We can approximate logarithmic
part with

J =
n∑

p=
√
n

ln(p) ∼ (
n

ln(n)
−
√
n

ln
√
n

) ln(n) = J̃ (23)
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clearly explained according to following graph

Fig 5. With:
Green → J summation function of logarithm.
Black → approximation J̃

To prove this conjecture we need a lemma using properties of logarithms

n∑
p=
√
n

ln(p) = ln(n])− ln(
√
n]) = ln(

n]√
n]

) (24)

hence (23) becomes
n]√
n]
∼ n

n
ln(n)−

√
n

ln
√

n =
n

n
ln n

n
√

n

ln
√

n

(25)

where n] is primorial of n.

Lemma 5.1 Assuming mean distance among two primes ln(n), the quantity
J − J̃ contains endless zeros with

J =
n∑

p=
√
n

ln(p) ∼ (
n

ln(n)
−
√
n

ln
√
n

) ln(n) = J̃ (26)

hence |J − J̃ | is not bounded .
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Proof :
Supposing that mean distance among two primes is ln(n), n+ log(n) represents
following prime of n. Assuming n is a zero thus we have using (25)

n]√
n]

= n
n

ln(n)−
√

n

ln
√

n (27)

Before reaching n+ ln(n) it holds following inequality

n
n

ln(n)−
√

n

ln
√

n < (n+ k)
n+k

ln(n+k)−
√

n+k

ln
√

n+k (28)

where k < lnn with n > 1.If k = lnn we obtain a new prime; hence n]√
n]

becomes
(n+ lnn)]√
n+ lnn]

=
n](n+ lnn)√

n]
= n

n
ln(n)−

√
n

ln
√

n (n+ lnn) (29)

by this way, we obtain that denominator will not increase, considering
√
n +

ln
√
n >

√
(n+ lnn). It means that while numerator will be multiplied by a

new prime number, the denominator will be always the same one.
Thanks to (29) for each n > 0 we can assert:

n
n

ln(n)−
√

n

ln
√

n (n+ lnn) > (n+ lnn)
n+ln n

ln(n+ln n)−
√

n+ln n

ln
√

n+ln (30)

deducing that when primorial’s fraction exceeds exponential’s fraction,we find
a prime. Furthermore we have to see which k value we have to choose to obtain

n
n

ln(n)−
√

n

ln
√

n (n+ lnn) = k
k

ln(k)−
√

k

ln
√

k (31)

If fixing k > n+lnn, we arrive to verify the foregoing equation, we could running
the risk of finding a prime (in mean) before reaching zero. In this case J̃ is a
perfect approximation because J̃ ≤ J . However the value

E = lim inf
n→∞

pn+1 − pn
ln pn

(32)

has been proved to be

• E < 1 Erdös

• E ≤ 1/2 , E ≤ 0.46650 . . . Bombieri , Davenport

• E ≤ 0.44254 . . . Huxley

• E ≤ 0.2486 . . . Maier

• E = 0 Goldston, Pintz e Yildirim
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this indicates that there are endless primes and the distance among these is
lesser then logarithm; on the other hand, to obtain mean value, you may find
endless primes which have a distance among themselves bigger then logarithm.
Continuing, we don’t find a prime before lnn then there are endless values that
verify (31) guaranteeing function endless oscillations of J− J̃ , remembering that
J − J̃ contains endless zeros .
The following graph shows ”difference function” oscillation, on logarithmic scale,
with n < 404

Fig. 6 This is the ”difference function” between ln ]n
]
√
n

and lnn
n

ln(n)−
√

n

ln
√

n

On the contrary, about bounds we deduce that:

n
n

ln(n)−
√

n

ln
√

n (n+ lnn)− (n+ lnn)
n+ln n

ln(n+ln n)−
√

n+ln n

ln
√

n+ln (33)

and

(n+ lnn− 1)
n+ln n−1

ln(n+ln n−1)−
√

n+ln n−1

ln
√

n+ln−1 − n
n

ln(n)−
√

n

ln
√

n (34)

represent |J − J̃ | max-values.
In fact the first max-value is J − J̃ , so we have to multiply n]√

n]
numerator by

n + lnn (a new prime); the second max-value represents J̃ − J distance where

we find no prime and we assume ]n
]
√
n

= n
n

ln(n)−
√

n

ln
√

n , i.e. this function is a zero

of J − J̃ .
Studying the functions (33) and (34) we have noticed that they are increasing
functions greater then zero, with n > 1, and they are not bounded from above.
These considerations prove our thesis . �
Assuming that mean distance between two prime numbers is ln(x) is basic to
demonstrate our theory.
In fact, as we show at the end of theorem 7.1, our theory is proved if we set
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logarithmic constant bigger then one. Furthermore presence of endless zeros
does not allow us to correct the mistake given by approximation of (26) in
fact studying (31) for each n value, we observe that k increases on an average
slower then logarithm. By this way J̃ approximates in excess twin prime amount
because mistakes of J− J̃ negative part will be greater then those of the positive
one. To avoid this fact you may choose a different approximation. A good
solution is

J̃ = (
n

ln(n) + α
−
√
n

ln
√
n

) ln(n) (35)

with α > 0.4.

6 Alternative approach to use of w(n) function
and L term

Considering would-be twin primes between x and its root, we find that these
numbers are bx∗26 c − b

√
x∗2
6 c according to (1). If we cut out from this formula

primes up to [
√
x, x] included we get the primes erased by the sieve without

repetitions. Hence we obtain effortlessly the (13) and third member of (6).
Therefore

1
L

∑
y∈π(

√
x)

K = bx
3
c − b

√
x

3
c − π(x) + π

√
(x) (36)

without computing w(n) for each would-be prime numbers. Therefore using all
these approximations we can right twin primes computing function :

Υ(x) = bx
6
c − b

√
x

6
c − 1

L

∑
y∈π(

√
x)

K + T (37)

with

1
L

∑
y∈π(

√
x)

K = bx
3
c − b

√
x

3
c − π(x) + π

√
x (38)

T =
∑

p∈[
√
x,x]

bdist(p)− 3
6

c (39)

It represents the amount of twin primes included between
√
x and x; if this

amount is bigger then zero, our conjecture (affirming that there are endless
twin primes couples) is proved.
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Fig. 7 With:
Red → exact twin primes function into [

√
x, x] and

Blue → Υ(x).

In addiction using prime number theorem:

π(x) + π
√
x ∼ (

x

ln(x)
−
√
x

ln
√
x

). (40)

7 Approximation of twin primes’counting func-
tion

Hence considering the previous conclusions we reach the following approxima-
tion

Υ̃(x) = bx
6
c − b

√
x

6
c − 1

L̃

∑
ỹ∈π(

√
x)

K̃ + T̃ (41)

with

1
L̃

∑
ỹ∈π(

√
x)

K̃ = bx
3
c − b

√
x

3
c − (

x

ln(x)
+
√
x

ln
√
x

) (42)

T̃ =
(ln(x)− 5.5)

6
(

x

ln(x)
−
√
x

ln
√
x

) (43)

13



Theorem 7.1 The function Υ̃(x), defined by (40)-(42), is bigger then zero for
each x > 141.83. This function approximates Υ(x), twin primes counting func-
tion, defined by (36)-(38).

Proof :

x

6
−
√
x

6
− x

3
+
√
x

3
+ (

x

ln(x)
−
√
x

ln
√
x

) +
(ln(x)− 5.5)

6
(

x

ln(x)
−
√
x

ln
√
x

) ≥ 0
√
x

6
− x

6
+ (

x

ln(x)
−
√
x

ln
√
x

)(1 +
(ln(x)− 5.5)

6
) ≥ 0

√
x− x+ (

x

ln(x)
−
√
x

ln
√
x

)(6 + ln(x)− 5.5) ≥ 0

ln(x) ln
√
x(
√
x− x) + (x ln

√
x−
√
x ln(x))(0.5 + ln(x))

ln(x) ln
√
x

≥ 0
√
x ln(x) ln

√
x+ 0.5(x ln

√
x−
√
x ln(x))− ln2(x)

√
x

ln(x) ln
√
x

≥ 0
√
x ln
√
x(ln(x) + 0.5

√
x)−

√
x ln(x)(0.5 + ln(x))

ln(x) ln
√
x

≥ 0

using logarithms properties
√
x( ln(x)+0.5

√
x

2 − 0.5− ln(x))
ln
√
x

≥ 0
√
x(0.5

√
x− 1− ln(x))
lnx

≥ 0

So the denominator is bigger then zero for each x > 1, and the numerator is
a logarithmic equation having as solutions 0.52 and 141.83. This equation is
positive for external values of the following range: [0.52, 141.83]. Hence Υ̃(x) is
positive for each x ∈ [0.52, 1] ∪ [141.83,∞) proving our theorem.
�
For each x < 20 you may count the twin primes by hand; the theorem assures
that our conjecture is proved, because for each new x, the twins will increase
more and more, assuming that the function is always positive. This assumption
guarantees that twin primes are endless.
The very basic computing hypothesis to demonstrate the theorem is the as-
sumption that the distance among primes is, in mean, bigger or equal then
ln(x): the same statement is valid for the estimate of J function in (27).If we
assumed that the distance among primes were k ln(x) with 0 < k < 1 from
Gauss’approximation our theorem had not been proved. For instance, with
k = 0.7851 we would have:

√
x(
√
x0.5− 1− 0.5702 ln(x)− 0.2149

√
x ln(x))

ln(x)
≥ 0

√
x(
√
x(0.5− 0.2149 ln(x))− 1− 0.5702 ln(x))

ln(x)
≥ 0
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So, positiveness of numerator depends from the following expression
√
x(0.5− 0.2149 ln(x)) (44)

This quantity is positive at the very beginning, but it will become soon negative
because of ln(x), by this way, the numerator will become negative too, consid-
ering that we will find a sum of all negative terms; and this fact will reject our
conjecture.

Teorema 7.2 Using hypothesis of theorem 7.1 and considering

T̃ =
(ln(x)− 5.5)

6
(

x

ln(x) + α
−
√
x

ln
√
x

) (45)

for each 0.4 ≤ α ≤ 0.5 the approximating function Υ̃(x) is positive for each
x > 90.

Following the step of foregoing demonstration we have

x

6
−
√
x

6
− x

3
+
√
x

3
+ (

x

ln(x)
−
√
x

ln
√
x

) +
(ln(x)− 5.5)

6
(

x

ln(x) + α
−
√
x

ln
√
x

) ≥ 0

√
x− x+ 6(

x

ln(x)
−
√
x

ln
√
x

) + (ln(x)− 5.5)(
x

ln(x) + α
−
√
x

ln
√
x

) ≥ 0

√
x− x+ 6

x

ln(x)
− 12

√
x

lnx
+

x lnx
ln(x) + α

− 2
√
x− 5.5x

ln(x) + α
+

11
√
x

lnx
≥ 0

√
x(1−

√
x+

6
√
x

lnx
− 12

lnx
+
√
x lnx

ln(x) + α
− 2− 5.5

√
x

ln(x) + α
+

11
lnx

) ≥ 0

√
x(−
√
x+

6
√
x

lnx
− 1

lnx
+
√
x lnx

ln(x) + α
− 1− 5.5

√
x

ln(x) + α
) ≥ 0

√
x(−
√
x lnx(y) + 6

√
x(y)− (y) + ln2 x

√
x− lnx(y)− 5.5

√
x lnx)

lnx(y)
≥ 0

with y = lnx + α Regarding this calculus we can compute the numerator as
follows

−(lnxα
√
x+ lnxα+ ln2 x+ 5.5

√
x lnx+ lnx+ α) + (6

√
x lnx+ 6

√
xα) ≥ 0

−(ln2 x+ α
√
x lnx+ lnx(α+ 1) + α) + (0.5

√
x lnx+ 6

√
xα) ≥ 0

The very basic terms are −α
√
x lnx and 0.5

√
x lnx, these ones prevail over all

others terms; considering that 6
√
xα prevails over ln2 x + lnx(α + 1) + α, but

6
√
xα is passed by (0.5 − α)

√
x lnx. The positiveness of the prevailing term

is given by α that consequently has to be lesser or equal to 0.5. Fixing when
0.4 ≤ α ≤ 0.5 Υ̃(x) is positive for each x > 90. �

Corollary 7.3 Given hypothesis that mean distance between two primes is ln(x)
there are endless compensation terms like 2 ln(x)− 2 .
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Proof : Using theorem 7.1 we can affirm that there are endless twin primes. So
considering x numbers mean distance between two primes is ln(x). Thus

ln(x) =
2 + y

2
→ y = 2 ln(x)− 2 (46)

where y compensates the mean and it can be a linear combination of the distance
among primes. �
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