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Abstract

In this paper we have described, in the Section 1, some mathematics concerning the Andrica’s
conjecture. In the Section 2, we have described the Cramer —Shank Conjecture. In the Section 3, we
have described some equations concerning the possible proof of the Cramer’s conjecture and the
related differences between prime numbers, principally the Cramer’s conjecture and Selberg’s
theorem. In the Section 4, we have described some equations concerning the p-adic strings and the
zeta strings. In the Section 5, we have described some equations concerning the Q -deformation in
toroidal compactification for N = 2 gauge theory. In conclusion, in the Section 6, we have described
some possible mathematical connections between various sectors of string theory and number
theory.

1. The Andrica’s Conjecture [1]

In this section we will show some mathematicsrelated to the Andrica’s conjecture:

\ pn+1_\/Fn<1

using some our results on Legendre’s conjecture ([2]).

Andrica’s conjecture

Andrica’s conjecture is so defined:

“...Andrica’s Conjecture is a conjecture of Numbers’ Theory, concerning the gaps between two

successive prime numbers, formulated by romeno’s mathematician Dorin Andrica in 1986. It
affirms that, for every couple of consecutive numbers p, and pn+1, we have:
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\ pn+1_\/?n<1

If we pose gn = pn+1— Pn, then the conjecture can be written as

g, < 2{yp,+1”.

Now we propose some mathematics concepts useful for a possible proof based on some
demonstrations concerning the Legendre’s Conjecture, and on square roots of numbers included in
the numeric gap between a square and the successive one.
“Legendre’s Conjecture, by Adrien — Marie Legendre, affirms that exists always a prime number
between n” and (n+1)% This conjecture is one of problems of Landau and, till now, it has not been
demonstrated”.
Some observations about Legendre’s conjectures are:

e between n® and (n+1)? don’t exists always a prime number, but at least two.

e ERATOSTENE Group has developed it, see[1] and [2].

Difference between to perfect squaresin therange| = [n? (n+1)]

To examine the connection between Legendre’s conjecture and the Andrica ‘s conjecture, we
must introduce some concepts.

Let | the closed range of integers definite as | = [n?, (n+1)?).
Let Dqp the difference between to consecutive perfect squares, in the range .
Lemma 1.

The difference D, between two consecutive perfect squares, in a closed range of integers | = [n?,
(n+1)?] is always an odd number.

Proof.

Dy = (N+1)*—n*=2n+1

Since for every n, Dy = 2n + 1, then is aways odd.
Example:

n =2, valid for all the n natural numbers,

Dp=3-2°=9-4=5=2*2+1



Lemma 2.

The number n of integer included in a closed range of integers | = [n?, (n+1)?] is an even number.
Proof.

For Lemma 1, since number of integer in | is:

N =Dg +1=2n+2=2(n+ 1), then N is an even number.

Example:

If n=2 N=2(3)=6 .Indeed the numbersincludedingap | are: 4,5, 6, 7,8, 9; with5and 7
prime numbers.

Squareroots of numbersin gap | =[n? (n+1)3.
Lemma 3.

The difference D,q of square roots of two numbers, also not consecutive (prime and composite), in
aclosed range of integers| = [n?, (n+1)?], excepts the number (n +1)?, is smaller than 1.

Proof.
At the extremes of the range of integer, Dyq iS:

Diq=n—-n=0if weconsider at beginning of theinterval the difference with itself or D;q = (n+1) —
n = 1. Therefore D,y changes between 0 and 1.

Lemma 3 excludes the numbers (n + 1)?, because in the second case the difference doesn’t give a
decimal part after the point. For this Lemma 3 is to check between n and (n +1)?-1.

Since we think true the Lengendre’s conjecture (see [2]), then between n? and (n + 1)* exists at
least a prime number and therefore an integer, so between the values 0 and 1 assumed by D, exist
some values smaller than 1.

Obviously since we make reference at integer numbers in the range [; it is indifferent that they are
prime or composite. Therefore it is possible the applicability of Legendre’s conjecture.

Example Square rootsfor n= 2.

V4 =2,00

V5 =2,23 with5 prime number p,
V6 =2,44

\7 =2,64 with 7 prime number py.1



V8 =2,82

V9 =3,00

Lemma 4.

In the range of integers | = [n?, (n+1)?] exist at least two prime numbers.
Proof.

The Bertrand’s postulate, that is true, says that “if n is an integer with n > 1, then there is always a
prime number such that n < p < 2n”.

If we define a= n? then the interval that we are considering is[a, a+ 1 + 2Va]. Now for n > 3 the
term a+ 1 + 2\a > 2a; therefore certainly is applicable the Betrand’s postulate but we observe also
that this interval is bigger than of that used in Bertrand’s postulate, therefore it increases the
probability to find at least a second prime number; in fact for Prime Number Theorem is:

2((N+1)2) = 2(n?) ~ In(?:—j:ll)z) -1 ()

Note: the intervals that we consider are the smaller critical intervals where we could risk don’t find
the second prime number, but that the (1) guarantee. In the case of Andrica’s conjecture, we think,
moreover, that the two consecutive prime numbers exists also a notabl e distances or notable gaps.
Example:

Intheinterval | with n =2 we have the two consecutive prime numbers 5 and 7.

\7-45 =264-223=041<1

From (1) results n((n+1)%)-n(n?) =~ 2,27

We note that this value is related with the aurea ratio by the following expression:

227 = %[(cp)ﬂ” @) 4 (@)™ + (@)= % 458359 = 2,20179
with @ = \/g; ! 161803398.... i.e. the aurearatio.

Lemmab.

The difference of square roots of two consecutive prime numbers that are in a closed interval of
integers | = [n?, (n+1)?], except the number (n+1)?, is smaller of 1.

Proof.

The Lemma5 is a consequence of Lemmas 3 and 4.
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Itisnot still aproof of Andrica’s conjecture; because the consecutive prime numbers could belong
to different square intervals.

Prime numbersin different squareintervals.

Some prime numbers belong to successive square intervals, also being valid the Andrica’s
conjecture, for example 113 and 127: the first is included in the interval between 107 and 112 the
second, 127, isincluded in the interval between 117 and 122 Really the square interval is aways
possible individualize only one: for exampleit is between 10% and 12°.

Lemma 6.

The difference of square roots of two numbers included in a closed interval of integers| = [n?,
(n+1)?] with k >1, except the number (n+k)?, is lowest of 1 provided that if k > 1 the difference
(n+k)>—n? # 0 mod 3.

Proof.

Lemma 6 can be demonstrated with all previous Lemmas, marking also that k tends only to increase
certainly the interval of sguares, Therefore the Lemma 6 is a generalization of Lemma 5. In
particular if k = 1 we return at Lemma 5 and it doesn’t occur to consider if the difference is a
multiple of 3.

For example 131 and 137 are two prime numbers and their difference is multiple of 3, but it doesn’t
count because the interval is the same for both the prime numbers. In fact is[11%, 12%] withk = 1.

Instead if we look 113 and 137 the interval to consider is different. That isk = 2, in fact is [10% 127
but 137 — 113 = 24 that ismultiple of 3.

Here the difference between the sguare roots is greater than 1 when the difference is even and
multiple of 3 (it is the same to say that it is multiple of 6). But there is to say that 137 and 113 are
not neither consecutive prime numbers. The problem that the difference between square roots of
two consecutive prime numbers can be greater than 1 could be when the two square intervals are
not adjacent, thence for example for k > 2.

With regard the prime numbers 113 and 137 and their difference, i.e. 24, we note that it is possible
the following mathematical connection with the Ramanujan’s modular function concerning the
physical vibrations of the bosonic strings:
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Lemma.

Two consecutive prime numbers, included in closed interval of integers | = [n?, (n+1)?] with k > 2,
haven’t got adifference D = 6j when j > 1, or even and multiple of 3.

Proof.
If the difference of two consecutive prime numbersis even and multiple of 3, it could be:

D =3m = 6] where m = 2j (even)
If j =1 wehave the situation k = 2 and of the prime numbers as 23 and 29 where D =6 (j=1) and
the difference of square roots is smaller than 1; thence the Lemma concentrate itself on casesj > 1.
Now the prime numbers can be to build with generator form p,=6n + 1, therefore if there exist two
consecutive prime numbersin intervals | withk >2 andj > 1 they have never D = 6] for the same
generator form.
However, if for absurd the consecutive prime numbers are such that:

Prti— Pn=6], |>1 (2

equivalent to:

JPry =/ P, +6]
Then we conclude that

JPoa =P =P +6i =P, >1 (3)

Since the (2) is false, we cannot conclude the (3). In other words if the difference between two
consecutive prime numbers is multiple of 6 we have aways found that the difference of square
roots of two consecutive prime numbersis greater than 1.

Andrica’s conjecture

The Andrica’s conjecture istrue for consequence of Lemma6 and Lemma?.

Proof.

The conjecture supposes the existence of two consecutive prime numbers. If these are included in
the same square interval aready the Lemma 5 will gives true the conjecture. If the two prime



numbers are included in different square intervals then Lemma 6 and Lemma 7 guarantee that the
conjecture istrue.

2. The Cramer —Shank Conjecture [2]
In this Section we have described the Cramer — Shank Conjecture, utilizing the mathematics used in
the precedent Section on the Andrica’s conjecture.

In the Cramer’s conjecture, R(p) isthe Cramer — Shank ratio, it doesn’t to be greater of 1 so that the
Cramer’s conjectureis true, in other words Cramer’s conjecture istrue if

pn+1_pn
R(p)= Prr=Pn 4
)= ey

The greatest value of R(p) known is0,92 for p, =1 693 182 318 746 370 with gap = 1132 between
this number and the following one pp+1 = pn + 1132.

It isinteresting note that the value 0,92 isrelated to the aurea ratio by the following expression:

0,92 = 0,92705098 = (®) """ 3 _0,61803399. 3 - ¥5-1) 3 :
2 2 2 )2
where @ = *E; 1 _161803308..

Lemma
If the Andrica’s conjectureistrue, then Cramer’s conjecture istrue.
Proof.

In the precedent Section we have described some results concerning the Andrica’s conjecture. Here
we have showed a consequence that influences on Cramer’s conjectures

If the Andrica’s conjectureistrue, thenis

3Y, pn+1_\/Fn<1

From here, if we raise to square both the members and we take into consideration the algebraic
rule (a+b)* =a®+ 2ab+b?, weobtain

WPna =P <1



From here, we obtain:

P + By -2 Prs14/ Bn <1

Re—arranging the formula, subtracting to both the members p, we obtain

Pra = B+ Py — 2\/ pn+1\/?n <1- Pn
P — Pn <1- 2pn + 2\/ pn+1\/Fn

Poa= Py _1-20,+2JP/Py
R(p) =
(Inp,)? (Inp,)?

For high value of prime number thisis the demonstration that:

Pni— pn
R n+
)= npy <

3. On some equations concerning a proof of the Cramer’s conjecture and the related
differences between prime numbers, principally the Cramer’s conjecture and Selberg’s
theorem. [3]

In number theory, Cramer’s conjecture, formulated by the Swedish mathematician Harald Cramer
in 1936, states that

Prs— o =Ollog p, ), (3.2)

where p, denotes the n™ prime number, O is big O notation, and “log” is the natural logarithm.
Cramer also gave much weaker conditional proof that

P.i— Py = Ol/p, log p,)

on the assumption of the Riemann hypothesis.
In the big-oh notation the eg. (3.1) can be rewritten also as follows

d, =0((logp,f). (32)
Let ustake f(x)=logx. First we prove, that lim___ (T —S,) isexists. We have that

d
limT, -S, = . (3.3
n=e Z |Og pl |Og pi +1

We use the root test to show that the limit exists and is finite. The k™ termis



d d,

a, = - . (34)
logp, logp,
Let, v, = G de , we get using the Bertrand’s Postul ate,
P Pria
( )2 1/k 1/k
Iimsup|vk|1/k —limsup P =PI 1 imaup Pl —1. (35
k=0 koo Pe Py ko] Pryg

Hence, looking at the conclusion of root test we can say, lim,, T, —S, exists. Therefore, there
exists r, € N, such that for all n>r,
| R ST
P X Py

Since, by the prime number theorem lim ;Tl(nx() ) =1, we can show that, lim_, p,../p,=1.
X=X X

Therefore, we get, as n — o

n

d, = pnﬂlog[%j- (37

Therefore,

1/k

pk+l pk+1
P10 —= | Py, Iog(j
y (pk}_ Ll P

1/k
. : d d .
Ilmsup|ak|l/k = Ilmsup|I k | k | =limsup | I (3.8)
o 109 P, 100 Py | logp, 09 .. ‘
Now, we have, as x — o
<z(x). (3.9

log x

1 1 1
Also, we have pmt> p . Also, asn—oo, lim _, p’™ =1. We know from the prime number

theorem, Iim_,_p,./p,=1. Hence,as n— «

1
prvt > % (3.10)

n

log p,.4
1) — 1 < 2). (3.11
(n+1) 00 . <(n+2). (311

Therefore, we get,



1/k 1/k

limsupla, | —Ilmsup Py Iog( pk+1J(Iog p'”l—lj <limsup|z (pk+1)|og( pk+1J(%_lJ
k—o0 k|10 Pr1 Px log P ko0 P« log Px
| 1/k 1/k
= Iimsup(k+1)|og( pk“J(M—lj < Ilmsuplog( pk”j <1. (312
Koo p. )\ logp, Kso Py
This implies, lim_ , T, —S, exists. Hence, we get, there exists n,, such that for al n>n,, we
have,
_ J‘pn+1 dX ’ (313)
logp, “r logx
implies
d : :
L—=Li —Li . (314
oa . (Ppa)—Li(p,). (3.14)

Similarly, we consider f(x)=(logx)’. First weprovethat lim_ (T, —S,) exists. Here,

d
S Zp Iogp.) (logp,,.) (319

We use the comparison test to show that the limit exists. Here, the k™ termis

__d 4
(logp. ) (logp,..)

(3.16)

We can easily check that, as k — «
O<b <a,. (317)

(Sinceas n—x, logp, +log p,,; <logp,logp,,,).

Hence, thesum " b, converges. This again implies, lim - S, exists, for f(x)=(logx).

n—oo n

Hence, we get, there exists n, € N, such that for all n>n,, we have,

d pn+1 dX
L= , (3.18
(logp,)? k. gy 19
implies
d : , p P
" —Li(p,.,)-Li(p,)-—L 40 (319
(logp, ) (o) LiCpy) logp,,, logp, (519

where, Li(x) isthe logarithmic integral function.
From equation (3.14) we get, there exists n, € N such that for al n>n,
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dn > = dn _ pn+1 + pn — pn+1 _ pn+1 — pn+1 (log pn+1 _1} . (320)
(l Og pn) |Og pn |Og pn+l IOg pn |Og pn |Og pn+l IOg pn+l IOg pn

1 1 1

Now, we have prt > pn‘T". Also, as n—>w, lim,_ p™ =1. We know from the prime number
theorem, lim___p..,/ p,=1. Hence,as n—

1

> P (399

n

(n+ 1)% <(n+2). (3.22)

n

Hence, as h — o« from equation (3.20) we get

d log p,..;
n Ml (< 2)— 1)=1. 3.23
(Iog pn)2 < 7Z'(pn+1{ Iog 0. J (n+ ) (n+ ) ( )

Thence, we obtain the following expression:

dn — J‘pml dX _
(logp,f e (logx)
lo d o
= |Ogn|;l ( I(?gpl:r;u _1j = (I o0 :3 )2 < 71-( an{ |§]gp;+l _1j < (n + 2)— (n + 1) =1; (3.24)
n+1 n h h
that can be rewritten also as follows:
dn _ J‘pn+1 dx _
(logp,f “» (logx)
lo d lo
= |ogn|;1 ( |()ggp;+1 _]J = —(I o9 ';) )2 < 71'( pn+1{ |(?gpr:+l_ _1J < (n + 2)— (n +j|_) =P - ¢ , (3_25)
n+1 n h h
where @© = \/§2+1 =1,61803398... (i.e., the aurea ratio), and ¢ = \/gT_l — 0,61803398... (i.e, the
aurea section).

3.1 The Cramer ’s conjecture and Selberg’s theorem

Now we would like to consider a conjecture, due to H. Cramer, which is almost certainly true. The
conjectureis

11



limsupPrt— P _ 1 (3.06)

e (logny

Obviously the conjecture implies that if k>1 and x> x,(k), then the interval (x,x+klog? x|

contains a prime number.
The following theorem and its corollaries, provide some mathematical support for a believe in
Cramer’s conjecture. For they imply that if the Riemann’s hypothesis is true, then the number of

primes for which (P,, - P,) is larger than (logn) is “small”. Let us introduce the following
notation

(X)=">d,,  N(X)=>1 (327

X <P, <2X P,<X
d,>h d,>h

We can now state the principal result:
THEOREM 1
If the Riemann hypothesisis true, then

(,(X)= O(%Iogz xj, N, (X)= O(%Iogz xj. (3.28)

COROLLARY

If the Riemann hypothesisistrue, then

() d,=0l/P logR,), (i) S dZ=0(Xlog*X), (iii) If 2>4,then z:_l%f(mga)‘%oo.

X <P, <2X n

The above theorem is an elementary consequence of the following result.
THEOREM 2

Suppose that the Riemann hypothesis is true. If £>0 and @ is a function of X such that
O<w< X7, thenas X tendsto infinity

Ix{@(XerXX)—e(x)_ 1}2 o O( Iogf) X j (3.29)

0 0]

Deduction of theorem 1 from theorem 2. — Let £ > 0 be afixed real number to be chosen later. We
shall consider two cases. (i) O<h< X" and (ii) X" <h<X. In case (i), we choose
®=h/4X andso O<w < X™°. Now suppose that

(P, Poa]c (X,2X]  (3.30)

andthat d, >h.If x satisfies
12



p, < X< P, +%dn, (3.31)

then
X+ 0" < p, +%dn +20" <p,+d =p,., (332

with the consequence
0(x+w*)-0(x)=0. (3.33)

Hence, we have

24, p"id{e(xmx)_@(x)—l} dx. (334)

Pn a)x

From theorem 2, we conclude that

> d=2 3 7 d{ (X”"XX)_Q(X)-lexs2jjx{9(x+wx)_9(x)—1}2dx:

X<p <2X X<p <2X w o*
d,> d,>
2
:o['og XJ:o(ﬁlogzxj. (3.35)
@ h

Thus if 0<h< X**¢, we have proved that éh(x):o(%log2 Xj. However, if we take ¢ <1/2

and choose h=X* with 1/2<a<1-¢, then ¢, (X)=0for X > X,. For if ¢,(X)=0, then
¢,(X)=h, and since we are still in case (i), we aso have

h= O[%Iogz x} . (3.36)

which leads to a contradiction if X is sufficiently large. Hence ¢,(X)=0 for X“<h< X . Thus

for al h satisfying 0<h< X we have zn(x)zo(%mgzxj. From the definition of N, (X), it

(,(X)> h{Nh(X)— Nhexj} . (337

Uponreplacing X by X /2", r =1,2,... and adding we deduce that

istrivia that

1

N, (X)= o(ﬁzh(x)j = o( = log? xj (3.38)

13



Proof of the corollaries.

(i)  If we take h=cv/X logX with ¢ sufficiently large, it follows that N, (X)<1 and so
N, (X)=0.
(i)  Wehave

> > dy= Dd 1= Hdi (339
1<h< X ><<>pr)1n52>< X<py<2X h<d, X<pp<2X

n

and from theorem 1, we also have

>y dn:O{Z%Iogzx}:O(Xlog"’X). (3.40)

1<h<X X<p,<2X h<X
d,>h

(iii) ~ From (i), it follows that

d? 2 1 2 A
—(logp,) £ ——— d-<——. (341
X<§;2X pn( IP ) X(IOQX)/1 X<p,<2X (IogX)/l 7 (540

Upon replacing X by 2" X for r =1,2,... and adding, we obtain

Y B(logp,)* < A (1092 X' =0(X" 1) (3.42)

p,>X Mn

and this latter seriesis convergentif 1 >4.
With regard the proof of theorem 3, we starts from the well known formula:

_ 1 Z()s
Q(X)—Z—MJ‘(C)TX dS, (343)

where Z*(S):Zp(log p)p, and (c) denotes the line c+it, c>1. Now, being completely

formal, we move the line of integrationto 1/2+ z+it, where z will be chose later, and encounter
apoleat S=1 withresidue x. Taking a difference, we have

o(x+ ) 6(x)— 0 = % " z*és) 0+ 0 —1ksds, (3.49)

thus

1 _
1, orde (1 [(1+ a’)zuﬂt—l}xndt- (3.49)
2 ~ it
X 2]

14



We now observe that the left hand side of the above equation is the formal Fourier transform of the
right hand side. From the Parseval inequality, we have

2

1 .
) T Z*(+z+|tj .
I:[H(X'Fa) )—Q(X)—a) ] %< 1 +002—|:(1+ a))5+z+it _1:| dt . (346)

1 D
X2 X 27 (;+ z+itj

In fact, the above inequality does hold, but the rigorous argument, which closely parallels the above
formal manipulations, starts not with 6(x) but with amore artificial function which approximates to

6(x). However, assuming that the inequality has been proved, we see

1 =
1., X 0 a)x XZZ XZz 0 )

X2

j:[e(” ) 0(x) - wx]Z% g wzjx{e(ﬂ o )-6(x) _1}2 dx jxr(ﬂ wxx)— 6(x) _l}zdx ,

(3.47)
and so

2
S1 .
x[0(x+a*)-0(x) | X7+ Z(2+Z+Itj L e
[ { —1} dx<—| {(1+ a))2+z+'t—1} dt. (3.48)
0 X 270 | (1 :

(2+ z+|tj

[0
Now we consider the integral on the right hand side of the above inequality. First of al, we note

that
‘@+mf—#:

J'll " austdu

< |S|a) (3.49)

and
@+ 0f -1<@+oy +1<3, (350)

since w <1 and o <1. Thus, upon splitting the range of integration (— oo,+oo) to the three parts
(~o0,~T], [-T,+T], (T,0) and using the first estimate in the middle range and the second estimate
in the end ranges we obtain as an upper bound for the integral:

Z*(;L z+it] L
Z*(—+ Z+ it}
2

1 . ‘
—+z+1t
2
It isnow arelatively straightforward technical lemmato show that

2

2

dt + 20? J:

k

dt. (3.51)

15
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Thus we now have

[ {H(x + a)xx)— o(x) 1de _ O(X_ZZ . ﬁJ . (3.54)

0 ) ®°TZ? z

and if we choose T=3/w and z=4/¢logX, the upper bound becomes O(Iog2 X /a)), which
compl etes the proof of theorem 2.

4. On some equations concer ning the p-adic strings and the zeta strings. [4] [9]

Like in the ordinary string theory, the starting point of p-adic strings is a construction of the
corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano
amplitude can be presented in the following forms:

tren e [T@r) | T  ToN@)] . c-a)2A-b)cl-c)
Alab)= g ¢ oce | AN TRNE FONE g SR R PIEts)

- g?[DX exp(—zi—ﬂjdzaaaxﬂéaxﬂjljjdzaj explikVx*), (4.1-4.4)

where =1, T=1r , and a:—a(s):—l—g , b=—alt) , c=-a(u) with the condition

s+t+u=-8,i.e.a+b+c=1.
The p-adic generalization of the above expression

A ab)= g° [ o,

A(ab)=g? IQp |><|z_1|1— x|t;_1dx, (4.5)

where || ) denotes p-adic absolute value. In this case only string world-sheet parameter x istreated

as p-adic variable, and all other quantities have their usual (real) valuation.
Now, we remember that the Gauss integrals satisfy adelic product formula

16



I;{w(ax +bx)d xl_” ;(pax +bx)dx 1, aeQ’, beQ, (4.6)

peP

what follows from

[ rloe sk a1 -2 venzp @

These Gauss integrals apply in evaluation of the Feynman path integrals
Lt j ZV( j qqt)dtj a, (4.8)

for kernels Kv(x“,t";x',t') of the evolution operator in adelic quantum mechanics for quadratic
Lagrangians. In the case of Lagrangian

22

L(q,q)%[—q——zqﬂj,

4

for the de Sitter cosmological model one obtains

K, (<" Tix 0 [K,(x"T;x,00=1, x"x,1€Q,TeQ", (49

peP

where
2713

/1-2 FA(xx) - 2]%_,_()(';_—)(')2] (4.10)

K, (x",T;x,0)= 4,(- 8T)|4T|;§ ZV(_

Also here we have the number 24 that correspond to the Ramanujan function that has 24 “modes”,
I.e.,, the physical vibrations of a bosonic string. Hence, we obtain the following mathematical
connection:

K,(x".T;x.0)= u—srxm;izv[— A 2]I+_<x“—X'>2] .

4 8T
© COSXW' _ 2, dx
antilog = COSN X @
e 4 ¢ (itw)

- . (4.10)
log{\/{lmilﬁ}\/(loiﬁj]

The adelic wave function for the simplest ground state has the form

=y, (x HQQXI,)) {0 X( )QX\EZZ, (4.12)

peP
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where Q([xlp):l if |><|p <1 and Q(]le)= 0 if |><|p >1. Since this wave function is non-zero only in

integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic
approach. The Gel’fand-Graev-Tate gamma and beta functions are:

=IR|><|ilzm(X)de=§(§l(a) a)=[, X (X)dpx P 4w
Bm =J|X|“|1—X|“dX=F() L) (), (413)

b)= [, Xy =X, dyx=T, (@), ()r, (0).  (414)

where a,b,ce C with condition a+b+c=1 and ¢(a) is the Riemann zeta function. With a
regularization of the product of p-adic gamma functions one has adelic products:

r,[]r,u=1, B(ab][B.(ab)=1, u=01L u=abec, (4.15)

peP peP

where a+b+c=1. We note that B, (a,b) and B_(a,b) are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic and
adelic zeta functions as

¢ (a)= jRexp(— ﬂxz}xﬁfldwx = ﬁ_zr[%j . (4.16)

¢ (@)= 1_1p_1 jQp QQX|p)x|2_ldpx= 1_1p-a , Rea>1, (4.17)

A@)=¢. @) ]¢()=¢.(a)(a), (4.18)

peP

one obtains
{al-2a)=¢,(a), (419

where £, (a) can be called adelic zeta function. We have also that

=¢,@[]¢,.(@)=¢.(a)(a)= IRexp(— nxz)x|i_ldwx : 1_1 - jQp QQx|p)x|i_1dpx. (4.19b)

peP p
Let us note that exp(— 7ZX2) and QQX|D) are analogous functions in real and p-adic cases. Adelic

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of
the adelic harmonic oscillator is the following Schwartz-Bruhat function:

1
x)=24e ™ Hgﬂxp\p), (4.20)
peP

whose the Fourier transform
18



)= [ 2l ()= 246 ngkp\p) 4.21)

has the same form as y,(x). The Mdllin transform of ,(x) is

&)= (1A i = [y, (I, ol ax=var{ 3 @) @z

and the same for A(k). Then according to the Tate formula one obtains (4.19).
The exact tree-level Lagrangian for effective scalar field ¢ which describes open p-adic string
tachyonis

1 [ 1 0 1
L==P | Zop2pr = | (423
P g p—l{ > p+ p+1§0 } (4.23)

where p is any prime number, 0 =-07 + V? is the D-dimensional d’Alambertian and we adopt

metric with signature (— +...+). Now, we want to show a model which incorporates the p-adic
string Lagrangians in arestricted adelic way. Let us take the following Lagrangian

L=YcL =3 L ——{——;éz 2+ 2 ¢””] (4.24)

n>1 n>1 n n>1 n>1

Recall that the Riemann zeta function is defined as

;(s):Z%:Hl_ls, s=o+ir, o>1. (4.25)
n>1 p p

Employing usual expansion for the logarithmic function and definition (4.25) we can rewrite (4.24)
in the form

L= { (M( J¢+¢+In(1 ¢)} (4.26)

where |¢|<1. ¢ (%j acts as pseudodifferential operator in the following way:

¢ [Ej¢(x) - ﬁ [ eixkg[— k—;]&f(k)dk . K=K -Ki>2+4g, (427)

2

where ¢ (k I e"g(x)dx isthe Fourier transform of #(x).

Dynamics of this fleld ¢ is encoded in the (pseudo)differential form of the Riemann zeta function.

When the d’Alambertian is an argument of the Riemann zeta function we shall call such
string a “zeta string”. Consequently, the above ¢ is an open scalar zeta string. The equation of

motion for the zetastring ¢ is
19



E = 1 ixk _k_2 -~ :L
5(2}/)_ (2z)° Lg_mﬂe g ( > ]¢ (k )dk T (4.28)

which has an evident solution ¢ =0.

For the case of time dependent spatially homogeneous solutions, we have the following equation of
motion

4 [_—Zatz}/ﬁ(t) = (2—17[) fko>@ge-ikot§(§]5 (ko )k, = f(;zt) . (429

With regard the open and closed scalar zeta strings, the equations of motion are

U 1 ixk k? )~ _ @ n
;(Ej¢:wje g(—Ejgé(k)dk_Za ¢", (4.30)

n>1

-

and one can easily seetrivial solution ¢ =6 =0.

n(n-1) "0t
2(n+1)9 (4 -1)|, (@431)

(zi)o | eing(— kjjé (K)k = Z{ o

nx1

5. On some equations concer ning the Q -deformation in toroidal compactification for N = 2
gaugetheory.

We denote the torus as T, and endow it with a constant metric G, , 1,J =1.2:
ds; =G,dd'd¢’,  6'~0+2z. (51)

The gauge theory probes the dual torus T, , the moduli space of flat U (1) -connections on T, . We
write such a connection as
A=iad6" +ia,dd?, (5.2

with constant hermitian matrices «,,«,. The gauge transformations generated by the U (1) -valued
functions

U, = exp(ir11<91+ in2<92) (5.3)
shift the components «, , by n,,, respectively. The natural metric on T isgiven by:

2 1 _ ij
ds}, = @a¥ Lo dAA *dA= /det(G)G'deydar, . (5.4)
It depends only on the complex structure of T, . It is convenient to parametrize G by two complex
numbers @, ,,

20



G”dozidOtj = |a)1d051 + a)zd052|2 (5.5)
defined up to a ssmultaneous phase rotation, so that the invariants are:
[ =G", o =6*, Reln@,)=G*. (56)

Let us assume

Wethen have:
For arectangular torus,

Let usfirst consider the case of gauge group U (l) We take the Maxwell action to be

1 4r 19
| = ,d**J9| 5 FF™+—&mF™F™|. (58
o )y @(gz mF ™+ B J (58)

4

If we take the four-manifold to be £ x T, with the product metric hx G, with h being the metric

on ¥, and denote the Riemannian measure of ¥ as du, then, in the low-energy approximation,
(5.8) reads as:

,/det (9)].d ( h*G'(5,A8, A)—;'ggabg”( AGA )J:
—ISI doy Ada, + ar” “det

.[ wa, + o,00) A *d(oe, + B,a,).  (5.9)

We note that
(27)?  39,4784176
8r 251327412

=157096.

Now, we have that:

[( )14/7 ( ) 717 ((D)—ZSIY +((D)‘42’7].g = 3,437694-3 =1,52786405;

(1,52786405 + @) % = (1,52786405 + 1,61803399)- % = 314589804 - % =1,57294902 .

21



where @ = =1,61803399 isthe aurearatio.

\/§+1
2

Thence, we can rewrite the eq. (5.9) also asfollows:
{[( )14/7 ( ) 717 (q))—zsn +(CI))_42/7]~£+®}-1><

x/det(g)]. d,u(&r h*G'(5,A8,A )—anbg” (0.A8,A )j:
=i 9_[ doy Ada, + 4z 'det

I (.0, + w0, ) A *d(@y, + By,). (5.9D)

The bosonic part of the pure N =2 gauge theory Lagrangian reduced on the torus T, is given at
low energies by

2
= S—”Zw/det(G t{(wda, + w,da,) A H@da, + D,da, )+ dg A *dg |—i Strde, A da,, (5.10)
4

where “tr” denotes the induced metricon t.
We note that

2
8’; ~ 39,478 = 39,624 :

(@) + cD]-g = 12,708204; ~19,06230590;

[(cp ) () )1‘”7]% =13,708204- g = 20,56230590; 19,06230590 + 20,56230590 = 39,6246118;

\/§+1
2

where ® = =1,61803399 isthe aurearatio.

Thence, we can rewrite the eg. (5.10) aso as follows:
_ 35/7 3 35/7 471 31 — —
L =) +q>].§+ (@) + (@ -E?,/idet(G t{(wda, + o,da, ) A (@ de, + @da,)+
4
+dg A*dg |—idtrde, Ada,. (5.10b)

The gauge theory part of this Lagrangian can be borrowed from (5.9). We view here
o, et®RI(A,, ®Z) asred, and ¢t®C as complex, with “tr” defining a positive definite

inner product on t. The Euclidean path integral measure is given by
et (511)

22



The condition for a field configuration to be invariant under the supercharge Q that is relevant to
Donadson theory and the Q -deformation is

d¢=0, oo +a,a,)=0, (5.12)

where the second equation is anti-selfduality of the gauge field in our low energy approximation.
For such fields, (5.11) evaluatesto:

exp(— I L)z exp(27zi z-0_|'trdoz1 A daz), (5.13)
where the complexified gauge coupling is equal to

9  A4n
=2+ (514
TO 272_ gi ( )

For the eg. (5.10), thence, we can rewrite the eq. (5.13) also asfollows:

87° L .
exp(— | Zigi,/det(G t{(da, + w,00,) A (@ da, + B,da,) + A A *dd }—i Krda A dazj -

(% 4
= eXp(Zﬂl (z + g—fjjtrdal AN dazJ . (514b)

Now we use the following notation:

87° Im(z,)
= Jdet(G)=27—~2L . (515
Ho= g2 " im(o,a;) (519

The Lagrangian (5.10) describes a sigma-model with target the product of a torus and t® C, al
divided by the Weyl group. Upon T -duality aong the «, direction, we map it to a sigma-model on

M, , after taking into account the nonlinear corrections. The T -duality is performed in the standard
fashion. The first step isto replace de, in (5.10) by an independent t -valued one-form p, and add

the term —2zitr(p, Ada,) to L, with the understanding that &, takes values in a circle of
circumference 1:

L'= %tr {(@,p, + 0,dat,) A (@, p, + D,dax, )+ A A A |+ ZMtr{[d&l + Zidazj A pl} . (5.16)
T

Integrating over a, would lead us back to (5.10). Instead, we integrate over p,. The path integral
over p, isGaussian, with the saddle point for p, at:

o, = —Rd 22 |dar, +i *2—”2(d&1+ida2j. (5.17)
! ,Uo|a)1| en

In terms of the left- and right-moving components of ¢, , (5.17) reads as follows:
23



oy = e 2 (&1 + iazj - R{&Jaz; a = _2—7[2(&1 "'iaz) - Ré{&}az . (518)
ol 2%, o\ 20"

The T-dual Lagrangian is given by:

dé, + gdazj/\ *(d&l +2‘9dazj

T v/

- |
LT :ﬂ teraz/\*da2+d¢/\*d¢+(2ﬂ)z -

2 2 2
2 |a)1| Ho |a)1|

W,

- 27 Re(&jtr(dﬁz + zidazj Ada,. (5.19)
b3

Introduce the t ® C -valued dimensionless coordinates Z,W :

Z-g+ 2o+ P, W=t ums. (520
2r i 2r

Intermsof Wand Z, eqg. (5.19) takes the form:

2
L' = —(2”) ~tr {dZ A*dZ + dW A *dW}— 27 R{&jtr(d&l + idazj Nda,. (5.21)
2/‘0|a)1| @ 27
Note that
Im(a)zj
272'2 w,
-7 . (522

,uo|a)1|2 Im(z, )

We note also that 7 can be expressed also in the following form (Ramanujan modular equation):

24 10+114/2 10+ 742
r=——log .| ——— |+ || ————
V142 4 4

modes of the physical vibrations of the bosonic strings. Furthermore, we observe also that the

] . We observe that 24 is the number concerning the

0

Fibonacci zeta function is £ (s)= Z f.®, where the nth Fibonacci number can be expressed as
n=1

f, = % and where ¢ = (1+ \/E)/ 2 isthe aurea ratio. The derivative of the Fibonacci zeta

functionis:

's——L+i n +3In2(5)_ nd) |—In(c)+Ols
) 2| 2000+ 61 - () 00,

24



Also here, we note that there is the number 24, i.e. the modes corresponding to the physical
vibrations of the bosonic strings.

Thence, from (5.21) and (5.22) we obtain the following mathematical connections with the
Ramanujan modular equation, the Fibonacci zeta function and the Palumbo-Nardelli model:

_ .

Im —2

27° 24 10+11y/2 10+ 742 (a)lj

> = log + =
oo ~142 4 4 Im(z,)

1 2 o) 376)_ i) in(e)+ o)
a2 SO 6 - i) o
=-[d*x/g [—% -59"97Tr(G,,G,.)f (¢)—%g”vaﬂ¢av¢} =

o0

jK Jax- 1’2e‘2®{R+46”®6”CD—%‘I:|3‘2—K—lonrVQFZF)}. (5.22b)
10 glO

0

2
L" = (ZL)ZU {0Z A #dZ + dW A +dW |- 27 R{&Jtr(dél + idazj A da, =
2,u0|a)1| @1 2

27° _ 24 09 \/(10+11\/§J+ (10+7J§] lm(coijj

=
ol 142 4 4 Im(z,)

1o, +3In2(5)_ n(5) |- In(c)+ O(s) =
In(¢)s® 24(2| ") ing) (5)j n(e)+ 0l

Vo 1 4
dst\/—{ ﬁ—ggﬂpg Tr(GWGM)f(¢)——g” a#w‘/¢}:

0

=| ijdm G”Ze‘Z{R+46 CDG“CD——‘H‘ KlOTr (RSP )} (5.220)

0 1

We deduce from (5.21) the target space metric

i =27 M9 ) (77 L anaw). (5.23)

" |m(fo)
In our approximation, the target space metric is flat; in the exact theory, it is a complete hyper-
Kahler metric on what we usually call M, . We also deduce from (5.21) a B-field, which, up to
exact terms, is given by:

25



_2r Re(w,/ o)

= m) (dZ A dZ +dW A dW )= (Re(w,/ @, ))o, . (5.24)

Here o, is the topologically normalized symplectic form on M, , which is Kahler in the complex
structure | . The functions of Z,W are holomorphic in complex structure | .

Also here we can note that there exists the mathematical connection with the Aurea section. Indeed,
we remember that 7 that is present in many equations of this chapter, is related to the Aurea section

J5-1

o= 5 by the following simple but fundamental relation:

arccosg =0,28797 . (5.25)

6. Mathematical connections

Now we take the eg. (3.25). We obtain the following connections with the egs. (4.19b) and (5.9):

dn :J'pml dX _
(logp,¥ 7 (logx)
_ pn+1 Iog pn+1 _ _ dn |Og pn+1 _ _ — _
~log pm( log p, 1) ) (log pn)2 ) ﬂ(p“”)( log p, lj <(n+2)-(+D)=0-¢=
a—. 1 a—.
= ¢,(@)= @[ ¢,(0) =, @K (a) = [ewlm) x| alX, K d,x=

1-p
= (28L)21/deti g )I d,u(S—Z h*G" (6aAabA )——Sgabg”( )]
T 2

=i szdal ANda, + 4z’ —_— det ; '[ o, + o,0) A *d(oe, + Bya,).  (6.1)

peP

Now we take the egs. (3.46), (3.48) and (3.54). We obtain the following connections with the eq.
(4.28):

2
1 .
. T Z*(+ z+|tj
r[@(X+w)—9(X)—w]%<i+ 2 a1 as
0 X 2xd= (1 .
(2+z+|t)

= 4(9j¢ = : D J-kg_R2>2+g eiXké/(_ k?jg(k)dk - ﬁ ’ (62)
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* 1+z+i 2
J.x{e(x+Q,X)_9(x)_1TdX< X rﬂ‘z(gizﬂtjtj{(ler)}m1} 4t =

E = 1 ixk _k_2 7 :L.
34(2)¢‘(2ﬂ)ofkg_gz>2+ge é( 2}zs(k)dk L 69

jx{e(ma;X)—ea(x)_lexzO(x_ZZ+ XZZTJ:

0 a)x

E = 1 ixk _k_2 - :L
- é/( 2)¢ - (272')D Iké—E2>2+ge é’( 2 j¢ (k)dk -4 (6.4)

In conclusion, we take the relationship (5.22c) that can be connected with the eg. (4.28) asfollows:

2
L = ﬂtr {dZ A*dZ +dW A *dW}— 27 R{&

i Jtr(d&l +ida2j A da, =
2/“0|w1| 21

.
I m(zj
.
=

I m(To )

o,

o7 24 log \/(10+11\/§]+ (10+7\/§}

T ol N2 4 4

CIn(g)s® 24 In(g)

E = 1 ixk _k_2 -~ :L
35( j¢‘(zﬂ>ofkg_gz>2+ge ¢ 2j¢(k)dk Lo 69

- i(Zln(cﬁ)+ 3In*(5) _ 6|n(5)J ~In(c)+O(s) =
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