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                                                                     Abstract   

In this paper we have described, in the Section 1, some mathematics concerning the Andrica s 
conjecture. In the Section 2, we have described the Cramer Shank Conjecture. In the Section 3, we 
have described some equations concerning the possible proof of the Cramer s conjecture and the 
related differences between prime numbers, principally the Cramer s conjecture and Selberg s 
theorem. In the Section 4, we have described some equations concerning the p-adic strings and the 
zeta strings. In the Section 5, we have described some equations concerning the -deformation in 
toroidal compactification for N = 2 gauge theory. In conclusion, in the Section 6, we have described 
some possible mathematical connections between various sectors of string theory and number 
theory.       

1. The Andrica s Conjecture  [1]   

In this section we will show some mathematics related  to the Andrica s conjecture:   

1 1n np p

  

using some our results  on  Legendre s conjecture ([2]).      

Andrica s conjecture   

Andrica s conjecture  is so defined:   

Andrica s Conjecture is a conjecture of Numbers

 

Theory, concerning the gaps between two 
successive prime numbers, formulated by  romeno s mathematician Dorin Andrica in 1986. It 
affirms that, for every couple of consecutive numbers  pn and  pn+1, we have: 
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1 1n np p

  
If we pose gn = pn+1 

 
pn, then the conjecture  can be written as   

n g <  2 + 1 np .  

.  

Now we propose some mathematics concepts useful for a possible proof based on some 
demonstrations concerning the Legendre s Conjecture, and on square roots of numbers included in 
the numeric gap between a square and the successive one.  

Legendre s Conjecture, by Adrien 

 

Marie Legendre, affirms that exists always a prime number 
between n2 and (n+1)2. This conjecture is one of problems of Landau and, till now, it has not been 
demonstrated .   

Some observations about Legendre s conjectures are:  

 

between n2 and (n+1)2 don t exists always a prime number, but at least two.  

 

ERATOSTENE Group has developed it, see [1] and  [2].  

Difference between to perfect squares in the range I = [n2, (n+1)2]  

To examine the connection between Legendre s conjecture and the Andrica s conjecture, we  
must introduce some concepts.   

Let I the closed  range of integers definite as I = [n2, (n+1)2].  

Let Dqp the difference between to consecutive perfect squares, in the range I.  

Lemma 1.  

The difference  Dqp between two consecutive perfect squares, in a closed range of integers  I = [n2, 
(n+1)2] is always an odd number.  

Proof.  

Dqp = (n +1)2 

 

n2 = 2n +1  

Since for every n, Dqp = 2n + 1, then is always odd.  

Example:  

n = 2, valid for all the n natural numbers.  

Dqp = 32 

 

22 =9 - 4 = 5 = 2*2 +1   
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Lemma 2.  

The number n of integer included in a closed range of integers I = [n2, (n+1)2] is an even number.  

Proof.  

For Lemma 1, since number of integer in I is:   

N = Dqp +1 = 2n + 2 = 2(n + 1), then N is an even number.  

Example:   

If    n = 2    N = 2(3) = 6  . Indeed the numbers included in gap I are : 4, 5, 6, 7, 8, 9; with 5 and  7 
prime numbers.  

Square roots of numbers in gap  I = [n2, (n+1)2].  

Lemma 3.  

The difference  Drq of square roots of two numbers, also not consecutive (prime and composite), in 
a closed range  of integers I = [n2, (n+1)2], excepts the number (n +1)2, is smaller than 1.  

Proof.  

At the extremes of the range of integer, Drq  is :  

Drq = n 

 

n = 0 if we consider at beginning of the interval  the difference with itself or Drq = (n+1) 
n = 1. Therefore Drq changes between 0 and 1.  

Lemma 3 excludes the numbers (n + 1)2,  because in the second case the difference doesn t give a 
decimal part after the point. For this Lemma 3 is to check between n2 and (n +1)2 -1.  

Since we think true the Lengendre s conjecture (see [2]), then between n2 and (n + 1)2  exists at 
least a prime number and therefore an integer, so between the values 0 and 1 assumed by Drq exist 
some values smaller than 1.  

Obviously since we make reference at integer numbers in the range I; it is indifferent that they are 
prime or composite. Therefore it is possible the applicability of Legendre s conjecture.    

Example Square roots for n = 2.  

4  = 2,00  

5  = 2,23    with 5  prime number pn  

6  = 2,44  

7  = 2,64    with 7 prime number pn+1 
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8  = 2,82  

9  = 3,00  

Lemma  4.  

In the range of integers I = [n2, (n+1)2] exist at least two prime numbers.  

Proof.  

The Bertrand s postulate, that is true, says that if n is an integer with n > 1, then there is always a 
prime number such that n < p < 2n .  

If we define a = n2 then the interval that  we are considering is [a, a + 1 + 2 a]. Now for n > 3 the  
term a + 1 + 2 a > 2a; therefore certainly is applicable the Betrand s postulate but we observe also 
that this interval is bigger than of that used in Bertrand s postulate, therefore it increases the 
probability to find at least a second prime number; in fact for Prime Number Theorem is:  

                                              2 2
2

2 1
(( 1) ) ( ) 1

ln(( 1) )

n
n n

n
    (1)  

Note: the intervals that we consider are the smaller critical intervals where we could risk don t find 
the second prime number, but that the (1) guarantee. In the case of Andrica s conjecture, we think, 
moreover, that the two consecutive prime numbers exists also a notable distances or notable gaps.    

Example:    

In the interval  I  with n =2 we have the two consecutive prime numbers 5 and 7.   

7 - 5  = 2,64 

 

2.23 = 0,41 < 1 
                                                         
From (1) results  ((n+1)2)- (n2)  2,27  

We note that this value is related with the aurea ratio by the following expression:     

                      29179,258359,4
2
1

2
1

27,2 7/567/357/217/21     

                                      with  ...61803398,1
2

15
, i.e. the aurea ratio.  

Lemma 5.  

The difference of square roots of two consecutive prime numbers that are in a closed interval of 
integers I = [n2, (n+1)2], except the number (n+1)2, is smaller of 1.  

Proof.   

The Lemma 5 is a consequence of Lemmas 3 and 4. 
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It is not  still a proof of Andrica s conjecture;  because the consecutive prime numbers could belong 
to different square intervals.    

Prime numbers in different square intervals.  

Some prime numbers belong to successive square intervals, also being valid the Andrica s 
conjecture, for example 113 and 127: the first is included in the interval between 102 and 112, the 
second, 127, is included  in the interval between 112 and 122. Really the square interval is always  
possible individualize only one: for example it is between 102 and 122.   

Lemma 6.  

The difference of square roots of two numbers included in a closed interval of integers I = [n2,  
(n+1)2] with k 1, except the number (n+k)2, is lowest of 1 provided that if k > 1 the difference 
(n+k)2 

 

n2   0 mod 3.    

                                                                                                                                                                   
Proof.  

Lemma 6 can be demonstrated with all previous Lemmas, marking also that k tends only to increase 
certainly the interval of squares, Therefore the  Lemma 6 is a generalization of Lemma 5. In 
particular if k = 1 we return at Lemma 5 and it doesn t occur to consider if the difference is a 
multiple of 3.   

For example 131 and 137 are two prime numbers and their difference is multiple of 3, but it doesn t 
count because the interval is the same for both the prime numbers. In fact is [112,  122] with k = 1.  

Instead if we look 113 and 137 the interval to consider is different. That is k = 2, in fact is  [102, 122] 
but 137 

 

113 = 24  that is multiple of 3.  

Here the difference between the  square roots is greater than 1 when the difference is even and 
multiple of 3 (it is the same to say that it is multiple of 6). But there is to say that 137 and 113 are 
not neither consecutive prime numbers. The problem that the difference between square roots of 
two consecutive prime numbers can be greater than 1 could be when the two square intervals are 
not adjacent, thence for example for k > 2.  

With regard the prime numbers 113 and 137 and their difference, i.e. 24, we note that it is possible 
the following mathematical connection with the Ramanujan s modular function concerning the 
physical vibrations of the bosonic strings:    
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Lemma 7.  

Two consecutive prime numbers, included in closed interval of integers  I = [n2, (n+1)2] with k > 2, 
haven t got a difference  D = 6j when j > 1, or even and multiple of 3.  

Proof.   

If the difference of two consecutive prime numbers is even and multiple of 3, it could be:  
            

D = 3m = 6j where m = 2j (even)  

If  j = 1  we have  the situation k = 2 and of the prime numbers as 23 and 29 where  D = 6 (j=1) and 
the difference of square roots is smaller than 1; thence the Lemma concentrate itself on cases j > 1. 
Now the prime numbers can be to build with generator form pn = 6n ± 1, therefore if there exist  two 
consecutive prime numbers in intervals I with k > 2 and j > 1  they have never D = 6j for the same  
generator form.  

However, if for absurd  the consecutive prime numbers are such that:  

pn+1   pn = 6j,   j > 1    (2)  

equivalent to: 

1 6n np p j

 

Then we conclude that 
                                            

1 6 1n n n np p p j p

 

   (3)  

Since the (2) is false, we cannot conclude the (3). In other words if the difference between two 
consecutive prime numbers is multiple of 6 we have always found that the difference of square 
roots of two consecutive prime numbers is greater than 1.  

Andrica s conjecture  

The Andrica s  conjecture is true for consequence of  Lemma 6 and Lemma 7.   

Proof.   

The conjecture supposes the existence of two consecutive prime numbers. If these are included in 
the same square interval already the Lemma 5 will gives true the conjecture. If the two prime 
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numbers are included in different square intervals then Lemma 6 and Lemma 7 guarantee that the 
conjecture  is true.  

                    

2. The Cramer Shank Conjecture  [2]    

In this Section we have described the Cramer 

 

Shank Conjecture, utilizing the mathematics used in 
the precedent Section on the Andrica s conjecture.  

In the Cramer s conjecture, R(p) is the Cramer 

 

Shank ratio, it doesn t to be greater of 1 so that the 
Cramer s conjecture is  true, in other words  Cramer s conjecture is true if  

                                                        1
ln 2

1

n

nn

p

pp
pR 

                                              
The greatest value of R(p) known is 0,92  for  pn =1 693 182 318 746 370 with gap = 1132 between 
this number and  the following one  pn+1 = pn + 1132.  

It is interesting note that the value 0,92 is related to the aurea ratio by the following expression:  

                         
2
3

2
15

2
3

61803399,0
2
3

92705098,092,0 7/7 ,    

                                                 where  ...61803398,1
2

15

    

Lemma    

If the Andrica s  conjecture is true, then Cramer s  conjecture  is true.   

Proof.  

In the precedent Section we have described some results concerning the Andrica s conjecture. Here 
we have showed a consequence that influences on Cramer s conjectures  

If the Andrica s conjecture is true, then is  

                                                             11 nn pp  

From here, if we raise to square both the members  and we take  into consideration the algebraic 

rule  222 2 bababa ,  we obtain 
                                          

                                                            1
2

1 nn pp                      
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From here, we obtain:  

                                                      12 11 nnnn pppp   

Re 

 
arranging  the formula, subtracting to both the members pn we obtain  

                                            

1 1

1 1

11
2 2

2 1

1 2 2

1 2 2
( ) 1

(ln ) (ln )

n n n n n n

n n n n n

n n nn n

n n

p p p p p p

p p p p p

p p pp p
R p

p p

  

For high value of prime number this is the demonstration that:  

                                                                

1
2

( ) 1
(ln )

n n

n

p p
R p

p

  

3. On some equations concerning a proof of the Cramer s conjecture and the related 
differences between prime numbers, principally the Cramer s conjecture and Selberg s 
theorem.  [3]   

In number theory, Cramer s conjecture, formulated by the Swedish mathematician Harald Cramer 
in 1936, states that 

                                                  2
1 log nnn pOpp ,    (3.1)  

where np denotes the nth prime number, O is big O notation, and log is the natural logarithm. 

Cramer also gave much weaker conditional proof that   

                                                       nnnn pppp log1       

on the assumption of the Riemann hypothesis. 
In the big-oh notation the eq. (3.1) can be rewritten also as follows  

                                                        2log nn pOd .    (3.2)   

Let us take xxf log . First we prove, that  nnn STlim is exists. We have that  

                                             
1 1loglog

lim
pi i

i

i

i
nn

n p

d

p

d
ST .    (3.3)  

We use the root test to show that the limit exists and is finite. The thk term is  
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1loglog k

k

k

k
k p

d

p

d
a .    (3.4)  

Let,  
1k

k

k

k
k p

d

p

d
v ,  we get using the Bertrand s Postulate,  

                         1suplimsuplimsuplim
/1

1

/1

1

2
1/1

k

k

k

k

k

kk

kk

k

k

k
k p

p

pp

pp
v .    (3.5)  

Hence, looking at the conclusion of root test we can say,  nnn STlim   exists. Therefore, there 

exists Nr0 , such that for all 0rn

 

                                                            
1n

n

p

p
n

n

p

d

x

dx
.    (3.6)  

Since, by the prime number theorem  1
ln/

lim
xx

x
x

, we can show that,  1/lim 1 nnn pp . 

Therefore, we get, as n

 

                                                      
n

n
nn p

p
pd 1

1 log .    (3.7)  

Therefore,  

   

k

k

k

k
k

k

k

k
k

k

k

k

k

k

k

k

k

k
k p

p

p
p

p

p

p
p

p

d

p

d
a

/1

1

1
1

1
1/1

1

/1

log

log

log

log

suplim
loglog

suplimsuplim .    (3.8)  

Now, we have, as x

 

                                                             x
x

x

log
.    (3.9)  

Also, we have  np
n

n
n pp

1

1

1

. Also, as n ,  1lim
1

np
nn p . We know from the prime number 

theorem,  1/lim 1 nnn pp .  Hence, as  n

  

                                                              
n

nn
n p

p
p 11

1

    (3.10)  

i.e, 

                                                    2
log

log
1 1 n

p

p
n

n

n .    (3.11)  

Therefore, we get, 
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k

k

k

k

k
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k

k

k

k

k

k

k

k

k

k

k
k p

p

p

p
p

p

p

p

p

p

p
a

/1

11
1

/1

11

1

1/1
1

log
log

logsuplim1
log

log
log

log
suplimsuplim

 
                    1logsuplim1

log
log

log1suplim

/1

1

/1

11

k

k

k

k

k

k

k

k

k

k p

p

p

p

p

p
k .    (3.12)  

This implies,  nnn STlim   exists. Hence, we get, there exists 0n , such that for all 0nn , we 

have, 

                                                        
1

loglog
n

n

p

p
n

n

x

dx

p

d
,    (3.13)  

implies 

                                                  nn
n

n pLipLi
p

d
1log

.    (3.14)  

Similarly, we consider  2log xxf . First we prove that  nnn STlim exists. Here,  

                                        
1

2
1

2 loglog
lim

pi i

i

i

i
nn

n p

d

p

d
ST .    (3.15)  

We use the comparison test to show that the limit exists. Here, the thk term is  

                                                 2
1

2 loglog k

k

k

k
k

p

d

p

d
b .    (3.16)  

We can easily check that, as k 
                                                            kk ab0 .    (3.17)  

(Since as  n , 11 loglogloglog nnnn pppp ).  

Hence, the sum  
1i kb  converges. This again implies,  nnn STlim   exists, for  2log xxf . 

Hence, we get, there exists  Nn1 , such that for all  1nn , we have,  

                                                  
1

22 loglog

n

n

p

p
n

n

x

dx

p

d
,    (3.18)  

implies 

                                  
n

n

n

n
nn

n

n

p

p

p

p
pLipLi

p

d

logloglog 1

1
12 ,    (3.19)  

where, xLi is the logarithmic integral function. 

From equation (3.14) we get, there exists Nn2 such that for all 2nn
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       1
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log
logloglogloglogloglog

1

1

1

1

11

1

1
2

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

p

p

p

p

p

p

p

p

p

p

p

p

p

d

p

d
.    (3.20)  

Now, we have  np
n

n
n pp

1

1

1

. Also, as  n ,  1lim
1

np
nn p . We know from the prime number 

theorem, 1/lim 1 nnn pp .  Hence, as  n

  

                                                              
n

nn
n p

p
p 11

1

    (3.21)  

i.e, 

                                                    2
log

log
1 1 n

p

p
n

n

n .    (3.22)  

Hence, as n

 

from equation (3.20) we get  

                            1121
log

log

log
1

12 nn
p

p
p

p

d

n

n
n

n

n .    (3.23)  

Thence, we obtain the following expression:  

                                                      
1

22 loglog

n

n

p

p
n

n

x

dx

p

d 

       1
log

log
log

1

1

1

n

n

n

n

p

p

p

p
1121

log
log

log
1

12 nn
p

p
p

p

d

n

n
n

n

n ;    (3.24)  

that can be rewritten also as follows:  

                                                       
1

22 loglog

n

n

p

p
n

n

x

dx

p

d 

     1
log

log
log

1

1

1

n

n

n

n

p

p

p

p
121

log
log

log
1

12 nn
p

p
p

p

d

n

n
n

n

n ,    (3.25)  

where  ...61803398,1
2

15

 

(i.e., the aurea ratio), and  ...61803398,0
2

15

 

(i.e., the 

aurea section).   

3.1 The Cramer s conjecture and Selberg s theorem   

Now we would like to consider a conjecture, due to H. Cramer, which is almost certainly true. The 
conjecture is 
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                                                      1
log

suplim 2
1

n

pp nn

n

.    (3.26)  

Obviously the conjecture implies that if 1k and kxx 0 , then the interval  xkxx 2log,   

contains a prime number. 
The following theorem and its corollaries, provide some mathematical support for a believe in 
Cramer s conjecture. For they imply that if the Riemann s hypothesis is true, then the number of 

primes for which nn PP 1 is larger than 2logn is small . Let us introduce the following 

notation  

                                             

hd
XPX
nh

n

n

dX
2

,        

hd
XP

h

n

n

XN 1.    (3.27)  

We can now state the principal result:  

THEOREM 1  

If the Riemann hypothesis is true, then  

                             X
h

X
OXh

2log ,        X
h

X
OXNh

2
2 log .    (3.28)  

COROLLARY  

If the Riemann hypothesis is true, then  

(i)  nnn PPOd log ,    (ii)  
XPX
n

n

XXOd
2

32 log ,    (iii)  If  4 , then  
1

2

log
n n

n

n P
P

d
.  

The above theorem is an elementary consequence of the following result.  

THEOREM 2  

Suppose that the Riemann hypothesis is true. If  0

 

and 

 

is a function of X

 

such that 
X0 , then as X tends to infinity  

                                    
X

x

x X
Odx

xx
0

22
log

1 .    (3.29)  

Deduction of theorem 1 from theorem 2. 

 

Let 0

 

be a fixed real number to be chosen later. We 
shall consider two cases:  (i)  10 Xh   and  (ii)  XhX 1 . In case (i), we choose 

Xh 4/

 

and so  X0 . Now suppose that  

                                                     XXpp nn 2,, 1     (3.30)  

and that  hdn . If x

 

satisfies  
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                                                       nnn dpxp
2
1

,    (3.31)  

then 

                                       12
2
1

nnn
X

nn
x pdpdpx     (3.32)  

with the consequence 
                                                       0xx x .    (3.33)  

Hence, we have  

                                       
nn

n

dp

p x

x

n dx
xx

d 2

1 2

1
2
1

.    (3.34)  

From theorem 2, we conclude that  

        

hd
XpX

hd
XpX

dp

p

X

X x

x

x

x

n

n

n

n

n

nn

n

dx
xx

dx
xx

d
2 2

2

1
2

22

1212

  

                                                X
h

X
O

X
O 2

2

log
log

.    (3.35)  

Thus if  10 Xh , we have proved that  X
h

X
OXh

2log . However, if we take 2/1

 

and choose  Xh

 

with  12/1 , then  0Xh

 

for 0XX . For if  0Xh , then 

hXh , and since we are still in case (i), we also have  

                                                          X
h

X
Oh 2log ,    (3.36)  

which leads to a contradiction if X

 

is sufficiently large. Hence 0Xh

 

for XhX .  Thus 

for all h satisfying  Xh0   we have X
h

X
OXn

2log .  From the definition of  XNh , it 

is trivial that 

                                               XNXNhX hhh 2
1

.    (3.37)  

Upon replacing X

 

by rX 2/ , ,...2,1r   and adding we deduce that  

                                         X
h

X
OX

h
OXN hh

2
2 log

1
.    (3.38)   
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Proof of the corollaries.  

(i) If we take XXch log

 
with c

 
sufficiently large, it follows that 1XNh and so 

0XNh . 

(ii) We have 
                                        

Xh
hd

XpX dh XpX
n

XpX
nn

n

n n nn

ddd
1 2 2

2

2

1     (3.39)  

and from theorem 1, we also have  

                               
Xh

hd
XpX Xh

n

n

n

XXOX
h

X
Od

1 2

32 loglog .    (3.40)  

(iii) From (i), it follows that  

                        
XpX XpX

nn
n

n

n n
X

A
d

XX
p

p

d

2 2
3

2
2

loglog

1
log .    (3.41)  

Upon replacing X

 

by Xr2

 

for ,...2,1r  and adding, we obtain  

                            
Xp

r r

r
n

n

n

n

rOXAp
p

d
1 1

33
2

2loglog     (3.42)  

and this latter series is convergent if  4 . 
With regard the proof of theorem 3, we starts from the well known formula:  

                                                
c

SdSx
S

SZ

i
x

2
1

,    (3.43)  

where  
p

SppSZ log , and c denotes the line  itc , 1c . Now, being completely 

formal, we move the line of integration to  itz2/1 , where z

 

will be chose later, and encounter 
a pole at  1S with residue x . Taking a difference, we have  

                         
z

SSxx dSx
S

SZ

i
xx

2

1 11
2
1

,    (3.44)  

thus 

                 dtx
it

itzZ

x

xx ititz

z

xx

11

2
1
2

1

2
1

2

1

2

1 .    (3.45)  
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We now observe that the left hand side of the above equation is the formal Fourier transform of the 
right hand side. From the Parseval inequality, we have  

          
0

2

2

1

2

2

1 11

2
1

2
1

2
1

dt
itz

itzZ

x

dx

x

xx itz

z

xx

.    (3.46)  

In fact, the above inequality does hold, but the rigorous argument, which closely parallels the above 
formal manipulations, starts not with x

 

but with a more artificial function which approximates to 

x . However, assuming that the inequality has been proved, we see  

0 0

2

2

2

2

2

0

2

2

2

1 11
X

x

x

zz

X

x

x

z

xx

dx
xx

Xx

dxxx

x

dx

x

xx
, 

                                                                                                                                                 (3.47) 
and so  

           
X itz

z

x

x

dt
itz

itzZ
x

dx
xx

0

2

2

1

2

22

11

2
1

2
1

2
1 .    (3.48)  

Now we consider the integral on the right hand side of the above inequality. First of all, we note 
that 

                                           SduSuSS 1

1

111     (3.49)  

and 

                                              31111 S ,    (3.50)  

since 1

 

and 1 . Thus, upon splitting the range of integration , to the three parts 

T, , TT , , ,T   and using the first estimate in the middle range and the second estimate 
in the end ranges we obtain as an upper bound for the integral:  

                                 
T

T
dtitzZdt

itz

itzZ

0

2

2

2

2
1

2

2
1

2
1

.    (3.51)  

It is now a relatively straightforward technical lemma to show that  
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                                            2

2

1

2
1

2
1

Tz
Odt

itz

itzZ

T
,    (3.52)  

and 

                                              
T

z

T
OdtitzZ

0 2

2

2
1

.    (3.53)  

Thus we now have  

                                2

2

22

22

0
1

z

TX

Tz

X
Odx

xx zzX

x

x

,    (3.54)  

and if we choose /3T   and  Xz log/4 , the upper bound becomes /log2 XO , which 
completes the proof of theorem 2.   

4. On some equations concerning the p-adic strings and the zeta strings.  [4] [5]  

Like in the ordinary string theory, the starting point of p-adic strings is a construction of the 
corresponding scattering amplitudes. Recall that the ordinary crossing symmetric Veneziano 
amplitude can be presented in the following forms:   

c

c

b

b

a

a
g

ac

ac

cb

cb

ba

ba
gdxxxgbaA

R

ba 111
1, 22112 

            
4

1

222 exp
2

exp
j

j
j XikdXXd

i
DXg ,    (4.1 

 

4.4)  

where 1 , /1T , and 
2

1
s

sa , tb , uc

 

with the condition 

8uts , i.e. 1cba . 
The p-adic generalization of the above expression  

                                                       
R

ba
dxxxgbaA

112 1, ,  

is: 

                                                
pQ

b

p

a

ppp dxxxgbaA
112 1, ,    (4.5)  

where 
p

... denotes p-adic absolute value. In this case only string world-sheet parameter x

 

is treated 

as p-adic variable, and all other quantities have their usual (real) valuation. 
Now, we remember that the Gauss integrals satisfy adelic product formula  
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R

Pp
Q pp

p

xdbxaxxdbxax 122 ,    Qa ,    Qb ,    (4.6)  

what follows from  

                         
vQ vvvvv a

b
aaxdbxax

4
2

2

2

1
2 ,   ...,...,2, pv .    (4.7)  

These Gauss integrals apply in evaluation of the Feynman path integrals  

                             
'',''

','

''

'
,,

1
',';'',''

tx

tx v

t

tvv qDdttqqL
h

txtxK ,    (4.8)  

for kernels ',';'','' txtxKv of the evolution operator in adelic quantum mechanics for quadratic 

Lagrangians. In the case of Lagrangian   

                                                          1
42

1
,

2

q
q

qqL ,  

for the de Sitter cosmological model one obtains   

                     
Pp

p xTxKxTxK 10,';,''0,';,'' ,    Qxx ,','' , QT ,    (4.9)  

where 

              
T

xxT
xx

T
TTxTxK vvvv 8

'''
4

2'''
24

480,';,''
232

2

1

.    (4.10)  

Also here we have the number 24 that correspond to the Ramanujan function that has 24 modes , 
i.e., the physical vibrations of a bosonic string. Hence, we obtain the following mathematical 
connection: 

                     
T

xxT
xx

T
TTxTxK vvvv 8

'''
4

2'''
24

480,';,''
232

2

1

 

                                  

4
2710

4
21110

log

'
142

'

cosh
'cos

log4 2

'

'
4

'

0
2

2

wt
itwe

dxe
x

txw

anti

w

w
t

wx

.    (4.10b)  

The adelic wave function for the simplest ground state has the form  

                                    
Pp

pA ZQx

Zxx
xxx

\,0

,
,    (4.11) 
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where 1
p

x if 1
p

x and 0
p

x if 1
p

x . Since this wave function is non-zero only in 

integer points it can be interpreted as discreteness of the space due to p-adic effects in adelic 
approach. The Gel fand-Graev-Tate gamma and beta functions are:  

           
R

a

a

a
xdxxa

11
,   

pQ a

a

pp

a

pp p

p
xdxxa

1
1 1

1
,    (4.12) 

                               
R

ba
cbaxdxxbaB

11
1, ,    (4.13) 

                               cbaxdxxbaB pppQ p

b

p

a

pp
p

11
1, ,    (4.14)  

where Ccba ,, with condition 1cba and a

 

is the Riemann zeta function. With a 
regularization of the product of p-adic gamma functions one has adelic products:  

                  
Pp

p uu 1,   
Pp

p baBbaB 1,, ,   ,1,0u   ,,, cbau     (4.15)  

where 1cba . We note that baB ,

 

and baBp , are the crossing symmetric standard and p-

adic Veneziano amplitudes for scattering of two open tachyon strings. Introducing real, p-adic and 
adelic zeta functions as  

                                   
R

a
a a

xdxxa
2

exp 212 ,    (4.16) 

                         
pQ ap

a

ppp p
xdxx

p
a

1
1

1
1 1

1 ,   1Re a ,    (4.17) 

                                         
Pp

pA aaaaa ,    (4.18) 

   
one obtains  

                                                          aa AA 1 ,    (4.19)  

where aA

 

can be called adelic zeta function. We have also that  

   
Pp

pA aaaaa
R

a
xdxx

12exp
pQ p

a

pp
xdxx

p

1

11
1

.    (4.19b)  

Let us note that 2exp x

 

and 
p

x

 

are analogous functions in real and p-adic cases. Adelic 

harmonic oscillator has connection with the Riemann zeta function. The simplest vacuum state of 
the adelic harmonic oscillator is the following Schwartz-Bruhat function:  

                                                   
Pp

pp
x

A xex
2

4

1

2 ,    (4.20)  

whose the Fourier transform 



  

19 

                                       
Pp

pp
k

AAA kexkxk
2

4

1

2     (4.21)  

has the same form as xA . The Mellin transform of xA

 
is   

R
Pp

Q

a

p

a

p

a

A

a

AA
p

a
a

xdxx
p

xdxxxdxxa 21

1

1

2
2

1
1

    (4.22)  

and the same for kA . Then according to the Tate formula one obtains (4.19). 
The exact tree-level Lagrangian for effective scalar field 

 

which describes open p-adic string 
tachyon is  

                                       12
2

2 1
1

2
1

1
1 p

p p
p

p

p

g
L ,    (4.23)  

where p

 

is any prime number, 22
t

 

is the D-dimensional d Alambertian and we adopt 

metric with signature ... . Now, we want to show a model which incorporates the p-adic 
string Lagrangians in a restricted adelic way. Let us take the following Lagrangian   

                      
1 1 1 1

12
22 1

1
2
111

n n n n

n
nnn n

n
gn

n
CL LL .    (4.24)  

Recall that the Riemann zeta function is defined as  

                                
1 1

11

n p
ss pn

s ,   is ,   1.    (4.25)  

Employing usual expansion for the logarithmic function and definition (4.25) we can rewrite (4.24) 
in the form 

                                        1ln
22

11
2g

L ,    (4.26)  

where 1. 
2

 

acts as pseudodifferential operator in the following way:  

                    dkk
k

ex ixk
D

~

22

1
2

2

,    222
0

2 kkk ,    (4.27)  

where   dxxek ikx~
   is the Fourier transform of x . 

Dynamics of this field 

 

is encoded in the (pseudo)differential form of the Riemann zeta function. 
When the d Alambertian is an argument of the Riemann zeta function we shall call such 
string a zeta string . Consequently, the above 

 

is an open scalar zeta string. The equation of 
motion for the zeta string 

 

is 
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2

2

22
0 1

~

22

1
2 kk

ixk
D dkk

k
e     (4.28)  

which has an evident solution 0 . 
For the case of time dependent spatially homogeneous solutions, we have the following equation of 
motion 

                        
t

t
dkk

k
et

k

tikt

1

~

22
1

2 00

2
0

2

2

0

0 .    (4.29)  

With regard  the open and closed scalar zeta strings, the equations of motion are  

                            n

n

nn
ixk

D dkk
k

e
1

2

12 ~

22

1
2

,    (4.30)  

            
1

11
2

12

1
12
1~

42

1
4

2

n

n
nn

nixk
D n

nn
dkk

k
e ,    (4.31)  

and one can easily see trivial solution 0 .   

5. On some equations concerning the -deformation in toroidal compactification for N = 2    
     gauge theory.   

We denote the torus as oT and endow it with a constant metric IJG , :2,1, JI  

                                           ji
ijT ddGds

o

2 ,        2ii .    (5.1)  

The gauge theory probes the dual torus V
oT , the moduli space of flat 1U -connections on oT . We 

write such a connection as 
                                                      2

2
1

1 didiA ,    (5.2)  

with constant hermitian matrices 21, . The gauge transformations generated by the 1U -valued 
functions 
                                                    2

2
1

1, exp
21

ininu nn     (5.3)  

shift the components 2,1

 

by 2,1n , respectively. The natural metric on V
oT is given by:  

                                   
o

V
o T ji

ij

T
ddGGdAdA

i
ds det

2

1
2

2 .    (5.4)  

It depends only on the complex structure of oT . It is convenient to parametrize ijG by two complex 

numbers 2,1 , 
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2

2211 ddddG ji
ij     (5.5)  

defined up to a simultaneous phase rotation, so that the invariants are:  

                                       112

1 G ,    222

2 G ,    12
21Re G .    (5.6)  

Let us assume  

                                                                      0Im
1

2

  

We then have: 

                                                       
12Im

1
det G .    (5.7)  

For a rectangular torus, 

                                                               
1

1

1
,    

2
2

i

  

Let us first consider the case of gauge group 1U . We take the Maxwell action to be  

                                  
4 4

4
8
1

2
4

4

X

pqmn
mnpq

mn
mn FF

i
FF

g
gxdI .    (5.8)  

If we take the four-manifold to be oT , with the product metric Gh , with h being the metric 

on , and denote the Riemannian measure of 

 

as d , then, in the low-energy approximation, 
(5.8) reads as:  

                 jbia
ijab

jbia
ijab AA

i
AAGh

g
dgI 2

4

2 8
det

8
2 

                    221122112
4

2

21

det4
dd

g

G
ddi .    (5.9)  

We note that 

                                                       57096,1
1327412,25
4784176,39

8
2 2

.  

Now, we have that:   

                      52786405,1
9
4

437694,3
9
47/427/287/77/14 ; 

            57294902,1
2
1

14589804,3
2
1

61803399,152786405,1
2
1

52786405,1 .  
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where 61803399,1
2

15

 
is the aurea ratio.    

Thence, we can rewrite the eq. (5.9) also as follows:  

                                     
2
1

9
47/427/287/77/14     

                           jbia
ijab

jbia
ijab AA

i
AAGh

g
dg

2
4

8
det 

                 221122112
4

2

21

det4
dd

g

G
ddi .    (5.9b)  

The bosonic part of the pure 2N

 

gauge theory Lagrangian reduced on the torus oT is given at 

low energies by  

    21221122112
4

2

det
2
8

dtrdiddddddtrG
g

L ,    (5.10)  

where tr

 

denotes the induced metric on t .  
We note that  

                                                           624,39478,39
2

8 2

;  

06230590,19
2
3

708204,12
2
37/35 ; 

56230590,20
2
3

708204,13
2
37/147/35 ;   19,06230590 + 20,56230590 = 39,6246118; 

where 61803399,1
2

15

 

is the aurea ratio.  

Thence, we can rewrite the eq. (5.10) also as follows:  

      221122112
4

7/147/357/35 det
1

2
3

2
3

ddddtrG
g

L 

                                                     21 dtrdidd .    (5.10b)   

The gauge theory part of this Lagrangian can be borrowed from (5.9). We view here  
ZRt cwt/2,1

  

as real, and  Ct   as complex, with tr defining a positive definite 

inner product on t . The Euclidean path integral measure is given by 

                                                                    
L

e .    (5.11)  
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The condition for a field configuration to be invariant under the supercharge Q that is relevant to 
Donaldson theory and the -deformation is  

                                               0d ,    02211 ,    (5.12)  

where the second equation is anti-selfduality of the gauge field in our low energy approximation. 
For such fields, (5.11) evaluates to:  

                                         2102expexp dtrdiL ,    (5.13)  

where the complexified gauge coupling is equal to  

                                                          2
4

0

4
2 g

i
.    (5.14)  

For the eq. (5.10), thence, we can rewrite the eq. (5.13) also as follows:  

     21221122112
4

2

)()(det
2
8

exp dtrdiddddddtrG
g 

                                         212
4

4
2

2exp dtrd
g

i
i .    (5.14b)  

Now we use the following notation:  

                                             
12

0
2
4

2

0 Im
Im

2det
8

G
g

.    (5.15)  

The Lagrangian (5.10) describes a sigma-model with target the product of a torus and Ct , all 
divided by the Weyl group. Upon T -duality along the 1

 

direction, we map it to a sigma-model on 

HM , after taking into account the nonlinear corrections. The T -duality is performed in the standard 

fashion. The first step is to replace 1d in (5.10) by an independent t -valued one-form 1p and add 

the term  11
~2 dpitr   to L , with the understanding that 1

~

 

takes values in a circle of 
circumference 1:  

    12122112211
0

2
~2

2
' pdditrdddpdptrL .    (5.16)  

Integrating over 1
~

 

would lead us back to (5.10). Instead, we integrate over 1p . The path integral 

over 1p is Gaussian, with the saddle point for 1p at:  

                               212

10

2
1

2
1 2

~2
Re ddidp .    (5.17)  

In terms of the left- and right-moving components of 1 , (5.17) reads as follows: 
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     2
1

2
212

10

1 Re
2

~2L ;    2
1

2
212

10

1 Re
2

~2R .    (5.18)  

The T-dual Lagrangian is given by:  

    2

1
2
0

2121
2

222

1

2

120 2
~

2
~

2
Im

2

dddd
ddddtrLT 

             222
1

2

2
~Re2 dddtri .    (5.19)  

Introduce the Ct -valued dimensionless coordinates WZ , :  

                                  22
4

21

4
2

~
g

i
Z ;        102

1
W .    (5.20)  

In terms of W and Z , eq. (5.19) takes the form:  

         221
1

2
2

10

2

2
~Re2

2

2
dddtriWddWZddZtrLT .    (5.21)  

Note that 

                                                         
0

1

2

2

10

2

Im

Im
2

.    (5.22)  

We note also that 

 

can be expressed also in the following form (Ramanujan modular equation):  

4
2710

4
21110

log
142

24
.  We observe that 24 is the number concerning the 

modes of the physical vibrations of the bosonic strings. Furthermore, we observe also that the 

Fibonacci zeta function is  
1n

s
nF fs , where the n th Fibonacci number can be expressed as  

5

nn

nf

 

and where 2/51

 

is the aurea ratio. The derivative of the Fibonacci zeta 

function is: 

                             sc
s

sF ln5ln6
ln

5ln3
ln2

24
1

ln
1

'
2

2
.  
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Also here, we note that there is the number 24, i.e. the modes corresponding to the physical 
vibrations of the bosonic strings. 
Thence, from (5.21) and (5.22) we obtain the following mathematical connections with the 
Ramanujan modular equation, the Fibonacci zeta function and the Palumbo-Nardelli model:  

                            2

10

22

0

1

2

Im

Im

4
2710

4
21110
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1 2

2

   

                         gfGGTrgg
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16
26 
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2

3
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~
2

1
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2

1
FTr

g
HReGxd .    (5.22b)   
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22/110

2
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~
2

1
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2

1
FTr

g
HReGxd .    (5.22c)        

We deduce from (5.21) the target space metric  

                                    WdWdZdZdds
H

0

122

Im
/Im

2M .    (5.23)  

In our approximation, the target space metric is flat; in the exact theory, it is a complete hyper-
Kahler metric on what we usually call HM . We also deduce from (5.21) a B-field, which, up to 
exact terms, is given by: 



  

26 

                       IWddWZddZ
i

B 12
0

12 /Re
Im

/Re
2
2

.    (5.24)  

Here I

 
is the topologically normalized symplectic form on HM , which is Kahler in the complex 

structure I . The functions of WZ , are holomorphic in complex structure I .  

Also here we can note that there exists the mathematical connection with the Aurea section. Indeed, 
we remember that 

 

that is present in many equations of this chapter, is related to the Aurea section 

2
15

 

by the following simple but fundamental relation: 

 

                                                       2879,0arccos

   

                                                   6. Mathematical connections   

Now we take the eq. (3.25). We obtain the following connections with the eqs. (4.19b) and (5.9):  
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det4
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Now we take the eqs. (3.46), (3.48) and (3.54). We obtain the following connections with the eq. 
(4.28):   
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In conclusion, we take the relationship (5.22c) that can be connected with the eq. (4.28) as follows:   
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